Note 1 : Recommended statistics for this type of classification highlighted in aqua
Note 2 : The recommender system assumes that the input is the result of classification over the whole data rather than just a part of it. If the confusion matrix is the result of test data classification, the recommendation is not valid.
| Actual | Predict
|
| Class | L1 | L2 | L3 | Description |
| ACC | 0.83333 | 0.75 | 0.58333 | Accuracy |
| AGF | 0.72859 | 0.62869 | 0.61009 | Adjusted F-score |
| AGM | 0.85764 | 0.70861 | 0.58034 | Adjusted geometric mean |
| AM | -2 | 1 | 1 | Difference between automatic and manual classification |
| AUC | 0.8 | 0.65 | 0.58571 | Area under the ROC curve |
| AUCI | Very Good | Fair | Poor | AUC value interpretation |
| AUPR | 0.8 | 0.41667 | 0.55 | Area under the PR curve |
| BB | 0.6 | 0.33333 | 0.5 | Braun-Blanquet similarity |
| BCD | 0.08333 | 0.04167 | 0.04167 | Bray-Curtis dissimilarity |
| BM | 0.6 | 0.3 | 0.17143 | Informedness or bookmaker informedness |
| CEN | 0.25 | 0.49658 | 0.60442 | Confusion entropy |
| DOR | None | 4.0 | 2.0 | Diagnostic odds ratio |
| DP | None | 0.33193 | 0.16597 | Discriminant power |
| DPI | None | Poor | Poor | Discriminant power interpretation |
| ERR | 0.16667 | 0.25 | 0.41667 | Error rate |
| F0.5 | 0.88235 | 0.35714 | 0.51724 | F0.5 score |
| F1 | 0.75 | 0.4 | 0.54545 | F1 score - harmonic mean of precision and sensitivity |
| F2 | 0.65217 | 0.45455 | 0.57692 | F2 score |
| FDR | 0.0 | 0.66667 | 0.5 | False discovery rate |
| FN | 2 | 1 | 2 | False negative/miss/type 2 error |
| FNR | 0.4 | 0.5 | 0.4 | Miss rate or false negative rate |
| FOR | 0.22222 | 0.11111 | 0.33333 | False omission rate |
| FP | 0 | 2 | 3 | False positive/type 1 error/false alarm |
| FPR | 0.0 | 0.2 | 0.42857 | Fall-out or false positive rate |
| G | 0.7746 | 0.40825 | 0.54772 | G-measure geometric mean of precision and sensitivity |
| GI | 0.6 | 0.3 | 0.17143 | Gini index |
| GM | 0.7746 | 0.63246 | 0.58554 | G-mean geometric mean of specificity and sensitivity |
| HD | 2 | 3 | 5 | Hamming distance |
| IBA | 0.36 | 0.28 | 0.35265 | Index of balanced accuracy |
| ICSI | 0.6 | -0.16667 | 0.1 | Individual classification success index |
| IS | 1.26303 | 1.0 | 0.26303 | Information score |
| J | 0.6 | 0.25 | 0.375 | Jaccard index |
| LS | 2.4 | 2.0 | 1.2 | Lift score |
| MCC | 0.68313 | 0.2582 | 0.16903 | Matthews correlation coefficient |
| MCCI | Moderate | Negligible | Negligible | Matthews correlation coefficient interpretation |
| MCEN | 0.26439 | 0.5 | 0.6875 | Modified confusion entropy |
| MK | 0.77778 | 0.22222 | 0.16667 | Markedness |
| N | 7 | 10 | 7 | Condition negative |
| NLR | 0.4 | 0.625 | 0.7 | Negative likelihood ratio |
| NLRI | Poor | Negligible | Negligible | Negative likelihood ratio interpretation |
| NPV | 0.77778 | 0.88889 | 0.66667 | Negative predictive value |
| OC | 1.0 | 0.5 | 0.6 | Overlap coefficient |
| OOC | 0.7746 | 0.40825 | 0.54772 | Otsuka-Ochiai coefficient |
| OP | 0.58333 | 0.51923 | 0.55894 | Optimized precision |
| P | 5 | 2 | 5 | Condition positive or support |
| PLR | None | 2.5 | 1.4 | Positive likelihood ratio |
| PLRI | None | Poor | Poor | Positive likelihood ratio interpretation |
| POP | 12 | 12 | 12 | Population |
| PPV | 1.0 | 0.33333 | 0.5 | Precision or positive predictive value |
| PRE | 0.41667 | 0.16667 | 0.41667 | Prevalence |
| Q | None | 0.6 | 0.33333 | Yule Q - coefficient of colligation |
| QI | None | Moderate | Weak | Yule Q interpretation |
| RACC | 0.10417 | 0.04167 | 0.20833 | Random accuracy |
| RACCU | 0.11111 | 0.0434 | 0.21007 | Random accuracy unbiased |
| TN | 7 | 8 | 4 | True negative/correct rejection |
| TNR | 1.0 | 0.8 | 0.57143 | Specificity or true negative rate |
| TON | 9 | 9 | 6 | Test outcome negative |
| TOP | 3 | 3 | 6 | Test outcome positive |
| TP | 3 | 1 | 3 | True positive/hit |
| TPR | 0.6 | 0.5 | 0.6 | Sensitivity, recall, hit rate, or true positive rate |
| Y | 0.6 | 0.3 | 0.17143 | Youden index |
| dInd | 0.4 | 0.53852 | 0.58624 | Distance index |
| sInd | 0.71716 | 0.61921 | 0.58547 | Similarity index |
Generated By PyCM Version 4.0