esys.downunder Package¶
Data inversion module built on escript
Classes¶
AbstractMinimizerAcousticVelocityMappingAcousticWaveFormArithmeticTupleBoundedRangeMappingCartesianReferenceSystemCostFunctionDataSourceDcResDcResistivityForwardDensityMappingDipoleDipoleSurveyDomainBuilderErMapperDataForwardModelForwardModelWithPotentialFunctionJobGeodeticCoordinateTransformationGeodeticReferenceSystemGravityInversionGravityModelHTIWaveInversionCostFunctionInversionDriverIsostaticPressureJobJointGravityMagneticInversionLinearMappingLinearPDELocatorMT2DModelTEModeMT2DModelTMModeMTMappingMagneticIntensityModelMagneticInversionMagneticModelMappingMeteredCostFunctionMinimizerExceptionMinimizerIterationIncurableBreakDownMinimizerLBFGSMinimizerMaxIterReachedMinimizerNLCGNetCdfDataNumpyDataPoleDipoleSurveyPolePoleSurveyReferenceSystemRegularizationRickerSchlumbergerSurveySeismicSourceSelfDemagnetizationModelSimpleSEGYWriterSmoothAnomalySonicHTIWaveSonicWaveSpatialCoordinateTransformationSplitInversionCostFunctionSplitMinimizerLBFGSSplitRegularizationStrongJointGravityMagneticInversionSubsidenceSusceptibilityMappingSyntheticDataSyntheticDataBaseSyntheticFeatureDataTTIWaveVTIWaveWaveBaseWennerSurveyxrange
-
class
esys.downunder.AbstractMinimizer(J=None, m_tol=0.0001, J_tol=None, imax=300)¶ Bases:
objectBase class for function minimization methods.
-
__init__(J=None, m_tol=0.0001, J_tol=None, imax=300)¶ Initializes a new minimizer for a given cost function.
Parameters: - J (
CostFunction) – the cost function to be minimized - m_tol (float) – terminate interations when relative change of the level set function is less than or equal m_tol
- J (
-
getCostFunction()¶ return the cost function to be minimized
Return type: CostFunction
-
getOptions()¶ Returns a dictionary of minimizer-specific options.
-
getResult()¶ Returns the result of the minimization.
-
logSummary()¶ Outputs a summary of the completed minimization process to the logger.
-
run(x0)¶ Executes the minimization algorithm for f starting with the initial guess
x0.Returns: the result of the minimization
-
setCallback(callback)¶ Sets a callback function to be called after every iteration. It is up to the specific implementation what arguments are passed to the callback. Subclasses should at least pass the current iteration number k, the current estimate x, and possibly f(x), grad f(x), and the current error.
-
setCostFunction(J)¶ set the cost function to be minimized
Parameters: J ( CostFunction) – the cost function to be minimized
-
setMaxIterations(imax)¶ Sets the maximum number of iterations before the minimizer terminates.
-
setOptions(**opts)¶ Sets minimizer-specific options. For a list of possible options see
getOptions().
-
setTolerance(m_tol=0.0001, J_tol=None)¶ Sets the tolerance for the stopping criterion. The minimizer stops when an appropriate norm is less than
m_tol.
-
-
class
esys.downunder.AcousticVelocityMapping(V_prior, Q_prior)¶ Bases:
esys.downunder.mappings.MappingMaps a p-velocity and Q-index to slowness square sigma=(V*(1-i*1/(2*Q))^{-2} in the form sigma=e^{Mr+m[0])}*( cos(Mi+m[1])) + i * sin(Mi+m[1])
-
__init__(V_prior, Q_prior)¶ initializes the mapping
Parameters: - V_prior – a-priori p-wave velocity
- Q_prior – a-priori Q-index (must be positive)
-
getDerivative(m)¶ returns the value for the derivative of the mapping for m
-
getInverse(s)¶ returns the value of the inverse of the mapping for s
-
getTypicalDerivative()¶ returns a typical value for the derivative
-
getValue(m)¶ returns the value of the mapping for m
-
-
class
esys.downunder.AcousticWaveForm(domain, omega, w, data, F, coordinates=None, fixAtBottom=False, tol=1e-10, saveMemory=True, scaleF=True)¶ Bases:
esys.downunder.forwardmodels.base.ForwardModelForward Model for acoustic waveform inversion in the frequency domain. It defines a cost function:
Math: defect = 1/2 integrate( ( w * ( a * u - data ) ) ** 2 )where w are weighting factors, data are the measured data (as a 2-comp vector of real and imaginary part) for real frequency omega, and u is the corresponding result produced by the forward model. u (as a 2-comp vector) is the solution of the complex Helmholtz equation for frequency omega, source F and complex, inverse, squared p-velocity sigma:
Math: -u_{ii} - omega**2 * sigma * u = FIt is assumed that the exact scale of source F is unknown and the scaling factor a of F is calculated by minimizing the defect.
-
__init__(domain, omega, w, data, F, coordinates=None, fixAtBottom=False, tol=1e-10, saveMemory=True, scaleF=True)¶ initializes a new forward model with acoustic wave form inversion.
Parameters: - domain (
Domain) – domain of the model - w (
Scalar) – weighting factors - data (
escript.Dataof shape (2,)) – real and imaginary part of data - F (
escript.Dataof shape (2,)) – real and imaginary part of source given at Dirac points, on surface or at volume. - coordinates (
ReferenceSystemorSpatialCoordinateTransformation) – defines coordinate system to be used (not supported yet) - tol (positive
float) – tolerance of underlying PDE - saveMemory (
bool) – if true stiffness matrix is deleted after solution of PDE to minimize memory requests. This will require more compute time as the matrix needs to be reallocated. - scaleF (
bool) – if true source F is scaled to minimize defect. - fixAtBottom (
bool) – if true pressure is fixed to zero at the bottom of the domain
- domain (
-
getArguments(sigma)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: sigma ( escript.Dataof shape (2,)) – a suggestion for complex 1/V**2Returns: solution, uTar, uTai, uTu Return type: escript.Dataof shape (2,), 3 xfloat
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getDefect(sigma, u, uTar, uTai, uTu)¶ Returns the defect value.
Parameters: - sigma (
escript.Dataof shape (2,)) – a suggestion for complex 1/V**2 - u (
escript.Dataof shape (2,)) – a u vector - uTar (
float) – equalsintegrate( w * (data[0]*u[0]+data[1]*u[1])) - uTai – equals
integrate( w * (data[1]*u[0]-data[0]*u[1])) - uTu (
float) – equalsintegrate( w * (u,u))
Return type: float- sigma (
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(sigma, u, uTar, uTai, uTu)¶ Returns the gradient of the defect with respect to density.
Parameters: - sigma (
escript.Dataof shape (2,)) – a suggestion for complex 1/V**2 - u (
escript.Dataof shape (2,)) – a u vector - uTar (
float) – equalsintegrate( w * (data[0]*u[0]+data[1]*u[1])) - uTai – equals
integrate( w * (data[1]*u[0]-data[0]*u[1])) - uTu (
float) – equalsintegrate( w * (u,u))
- sigma (
-
getSourceScaling(u)¶ returns the scaling factor s required to rescale source F to minimize defect
|s * u- data|^2Parameters: u ( escript.Dataof shape (2,)) – value of pressure solution (real and imaginary part)Return type: complex
-
getSurvey(index=None)¶ Returns the pair (data, weight)
If argument index is ignored.
-
rescaleWeights(scale=1.0, sigma_scale=1.0)¶ rescales the weights such that
Math: integrate( ( w omega**2 * sigma_scale * data * ((1/L_j)**2)**-1) +1 )/(data*omega**2 * ((1/L_j)**2)**-1) * sigma_scale )=scale
Parameters: - scale (positive
float) – scale of data weighting factors - sigma_scale (
Scalar) – scale of 1/vp**2 velocity.
- scale (positive
-
setUpPDE()¶ Creates and returns the underlying PDE.
Return type: lpde.LinearPDE
-
-
class
esys.downunder.ArithmeticTuple(*args)¶ Bases:
objectTuple supporting inplace update x+=y and scaling x=a*y where
x,yis an ArithmeticTuple andais a float.Example of usage:
from esys.escript import Data from numpy import array a=eData(...) b=array([1.,4.]) x=ArithmeticTuple(a,b) y=5.*x
-
__init__(*args)¶ Initializes object with elements
args.Parameters: args – tuple of objects that support inplace add (x+=y) and scaling (x=a*y)
-
-
class
esys.downunder.BoundedRangeMapping(s_min=0, s_max=1)¶ Bases:
esys.downunder.mappings.MappingMaps an unbounded parameter to a bounded range. The mapping is smooth and continuous.
-
__init__(s_min=0, s_max=1)¶ Initialize self. See help(type(self)) for accurate signature.
-
getDerivative(m)¶ returns the value for the derivative of the mapping for m
-
getInverse(s)¶ returns the value of the inverse of the mapping for s
-
getTypicalDerivative()¶ returns a typical value for the derivative
-
getValue(m)¶ returns the value of the mapping for m
-
-
class
esys.downunder.CartesianReferenceSystem(name='CARTESIAN')¶ Bases:
esys.downunder.coordinates.ReferenceSystemIdentifies the Cartesian coordinate system
-
__init__(name='CARTESIAN')¶ set up Cartesian coordinate system
-
createTransformation(domain)¶ creates an appropriate coordinate transformation on a given domain
Parameters: domain ( esys.escript.AbstractDomain) – domain of transformationReturn type: SpatialCoordinateTransformation
-
getName()¶ returns the name of the reference system
-
isCartesian()¶ returns if the reference system is Cartesian
Return type: bool
-
isTheSame(other)¶ test if argument
otherdefines the same reference systemParameters: other ( ReferenceSystem) – a second reference systemReturns: Trueifotheris aCartesianReferenceSysteminstance.Return type: boolNote: every two CartesianReferenceSysteminstances are considered as being the same.
-
-
class
esys.downunder.CostFunction¶ Bases:
objectA function f(x) that can be minimized (base class).
Example of usage:
cf=DerivedCostFunction() # ... calculate x ... args=cf.getArguments(x) # this could be potentially expensive! f=cf.getValue(x, *args) # ... it could be required to update x without using the gradient... # ... but then ... gf=cf.getGradient(x, *args)
The class distinguishes between the representation of the solution x (x-type) and the gradients (r-type).
Note: The provides_inverse_Hessian_approximation class member should be set to Truein subclasses that provide a valid implementation ofgetInverseHessianApproximation()-
__init__()¶ Constructor. Initializes logger.
-
getArguments(x)¶ returns precalculated values that are shared in the calculation of f(x) and grad f(x) and the Hessian operator. The default implementation returns an empty tuple.
Note
The tuple returned by this call will be passed back to this
CostFunctionin other calls(eg:getGradient). Its contents are not specified at this level because no code, other than theCostFunctionwhich created it, will be interacting with it. That is, the implementor can put whatever information they find useful in it.Parameters: x (x-type) – location of derivative Return type: tuple
-
getDualProduct(x, r)¶ returns the dual product of
xandrReturn type: float
-
getGradient(x, *args)¶ returns the gradient of f at x using the precalculated values for x.
Parameters: - x (x-type) – location of derivative
- args – pre-calculated values for
xfromgetArguments()
Return type: r-type
-
getInverseHessianApproximation(x, r, *args)¶ returns an approximative evaluation p of the inverse of the Hessian operator of the cost function for a given gradient r at a given location x: H(x) p = r
Parameters: - x (x-type) – location of Hessian operator to be evaluated
- r (r-type) – a given gradient
- args – pre-calculated values for
xfromgetArguments()
Return type: x-type
Note: In general it is assumed that the Hessian H(x) needs to be calculated in each call for a new location x. However, the solver may suggest that this is not required, typically when the iteration is close to completeness.
Note: Subclasses that implement this method should set the class variable
provides_inverse_Hessian_approximationtoTrueto enable the solver to call this method.
-
getNorm(x)¶ returns the norm of
xReturn type: float
-
getValue(x, *args)¶ returns the value f(x) using the precalculated values for x.
Parameters: x (x-type) – a solution approximation Return type: float
-
provides_inverse_Hessian_approximation= False¶
-
updateHessian()¶ notifies the class that the Hessian operator needs to be updated. This method is called by the solver class.
-
-
class
esys.downunder.DataSource(reference_system=None, tags=[])¶ Bases:
objectA class that provides survey data for the inversion process. This is an abstract base class that implements common functionality. Methods to be overwritten by subclasses are marked as such. This class assumes 2D data which is mapped to a slice of a 3D domain. For other setups override the methods as required.
-
__init__(reference_system=None, tags=[])¶ Constructor. Sets some defaults and initializes logger.
Parameters: - tags (
listof almost any type (typicallystr)) – a list of tags associated with the data set. - reference_system (
NoneorReferenceSystem) – the reference coordinate system
- tags (
-
ACOUSTIC= 2¶
-
GRAVITY= 0¶
-
MAGNETIC= 1¶
-
MT= 3¶
-
getDataExtents()¶ returns a tuple of tuples
( (x0, y0), (nx, ny), (dx, dy) ), wherex0,y0= coordinates of data originnx,ny= number of data points in x and ydx,dy= spacing of data points in x and y
This method must be implemented in subclasses.
-
getDataType()¶ Returns the type of survey data managed by this source. Subclasses must return
GRAVITYorMAGNETICorACOUSTICas appropriate.
-
getHeightScale()¶ returns the height scale factor to convert from meters to the appropriate units of the reference system used.
Return type: float
-
getReferenceSystem()¶ returns the reference coordinate system
Return type: ReferenceSystem
-
getSubsamplingFactor()¶ Returns the subsampling factor that was set via
setSubsamplingFactor(see there).
-
getSurveyData(domain, origin, NE, spacing)¶ This method is called by the
DomainBuilderto retrieve the survey data asDataobjects on the given domain.Subclasses should return one or more
Dataobjects with survey data interpolated on the givenescriptdomain. The exact return type depends on the type of data.Parameters: - domain (
esys.escript.Domain) – the escript domain to use - origin (
tupleorlist) – the origin coordinates of the domain - NE (
tupleorlist) – the number of domain elements in each dimension - spacing (
tupleorlist) – the cell sizes (node spacing) in the domain
- domain (
-
getTags()¶ returns the list of tags
Return type: list
-
getUtmZone()¶ All data source coordinates are converted to UTM (Universal Transverse Mercator) in order to have useful domain extents. Subclasses should implement this method and return the UTM zone number of the projected coordinates.
-
hasTag(tag)¶ returns true if the data set has tag
tagReturn type: bool
-
setSubsamplingFactor(f)¶ Sets the data subsampling factor (default=1).
The factor is applied in all dimensions. For example a 2D dataset with 300 x 150 data points will be reduced to 150 x 75 when a subsampling factor of 2 is used. This becomes important when adding data of varying resolution to a
DomainBuilder.
-
-
class
esys.downunder.DcRes(domain, locator, delphiIn, sampleTags, phiPrimary, sigmaPrimary, w=1.0, coordinates=None, tol=1e-08, saveMemory=True, b=None)¶ Bases:
esys.downunder.forwardmodels.base.ForwardModelForward Model for DC resistivity, with a given source pair. The cost function is defined as:
Math: defect = 1/2 (sum_s sum_pq w_pqs * ((phi_sp-phi_sq)-v_pqs)**2 -
__init__(domain, locator, delphiIn, sampleTags, phiPrimary, sigmaPrimary, w=1.0, coordinates=None, tol=1e-08, saveMemory=True, b=None)¶ setup new forward model
Parameters: - domain – the domain of the model
- locator – contains locator to the measurement pairs
- sampleTags (list of tuples) – tags of measurement points from which potential differences will be calculated.
- phiPrimary (
Scalar) – primary potential.
Type: escript domain
Type: listofLocatorParam: delphiIn: this is v_pq, the potential difference for the current source and a set of measurement pairs. A list of measured potential differences is expected. Note this should be the secondary potential only.
-
getArguments(sigma)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: sigma ( Dataof shape (1,)) – conductivityReturns: phi Return type: Dataof shape (1,)
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getDefect(sigma, phi, loc_phi)¶ Returns the defect value.
Parameters: - sigma (
Dataof shape (1,)) – a suggestion for conductivity - phi (
Dataof shape (1,)) – potential field
Return type: float- sigma (
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(sigma, phi, loc_phi)¶ Returns the gradient of the defect with respect to density.
Parameters: - sigma (
Dataof shape (1,)) – a suggestison for conductivity - phi (
Dataof shape (1,)) – potential field
- sigma (
-
getPrimaryPotential()¶ returns the primary potential :rtype:
Data
-
-
class
esys.downunder.DcResistivityForward¶ Bases:
objectThis class allows for the solution of dc resistivity forward problems via the calculation of a primary and secondary potential. Conductivity values are to be provided for the primary problem which is a homogeneous half space of a chosen conductivity and for the secondary problem which typically varies it conductivity spatially across the domain. The primary potential acts as a reference point typically based of some know reference conductivity however any value will suffice. The primary potential is implemented to avoid the use of dirac delta functions.
-
__init__()¶ This is a skeleton class for all the other forward modeling classes.
-
checkBounds()¶
-
getApparentResistivity()¶
-
getElectrodes()¶ retuns the list of electrodes with locations
-
getPotential()¶
-
-
class
esys.downunder.DensityMapping(domain, z0=None, rho0=None, drho=None, beta=None)¶ Bases:
esys.downunder.mappings.LinearMappingDensity mapping with depth weighting
rho = rho0 + drho * ( (x_2 - z0)/l_z)^(beta/2) ) * m
-
__init__(domain, z0=None, rho0=None, drho=None, beta=None)¶ initializes the mapping
Parameters: - domain (
Domain) – domain of the mapping - z0 (scalar) – depth weighting offset. If not present no depth scaling is applied.
- rho0 (scalar) – reference density, defaults to 0
- drho (scalar) – density scale. By default density of granite = 2750kg/m**3 is used.
- beta (
float) – depth weighting exponent, defaults to 2
- domain (
-
getDerivative(m)¶ returns the value for the derivative of the mapping for m
-
getInverse(p)¶ returns the value of the inverse of the mapping for s
-
getTypicalDerivative()¶ returns a typical value for the derivative
-
getValue(m)¶ returns the value of the mapping for m
-
-
class
esys.downunder.DipoleDipoleSurvey(domain, primaryConductivity, secondaryConductivity, current, a, n, midPoint, directionVector, numElectrodes)¶ Bases:
esys.downunder.dcresistivityforwardmodeling.DcResistivityForwardDipoleDipoleSurvey forward modeling
-
__init__(domain, primaryConductivity, secondaryConductivity, current, a, n, midPoint, directionVector, numElectrodes)¶ This is a skeleton class for all the other forward modeling classes.
-
checkBounds()¶
-
getApparentResistivity()¶
-
getApparentResistivityPrimary()¶
-
getApparentResistivitySecondary()¶
-
getApparentResistivityTotal()¶
-
getElectrodes()¶ retuns the list of electrodes with locations
-
getPotential()¶ Returns 3 list each made up of a number of list containing primary, secondary and total potentials diferences. Each of the lists contain a list for each value of n.
-
-
class
esys.downunder.DomainBuilder(dim=3, reference_system=None)¶ Bases:
objectThis class is responsible for constructing an escript Domain object with suitable extents and resolution for survey data (
DataSourceobjects) that are added to it.The domain covers a region above and below the Earth surface. The East-West direction is used as the x- or longitudinal or x[0] direction, the North-South direction is used as the y- or latitudinal or x[1] direction, the vertical direction is denoted by z or radial or x[2] direction. The corresponding terms are used synonymously.
-
__init__(dim=3, reference_system=None)¶ Constructor.
Parameters: - dim (
int) – Dimensionality (2 or 3) of the target domain. This has implications for the survey data than can be added. By default a 3D domain is created. - reference_system (
ReferenceSystem) – reference coordinate system. By default the Cartesian coordinate system is used.
- dim (
-
addSource(source)¶ Adds a survey data provider to the domain builder. An exception is raised if the domain has already been built. An exception is also reported if the reference system used is cartesian and the UTM zone of
sourcedoes not match the UTM zone of sources already added to the domain builder (see Inversion Cookbook for more information). The dimensionality of the data source must be compatible with this domain builder. That is, the dimensionality of the data must be one less than the dimensionality of the domain (specified in the constructor).Parameters: source ( DataSource) – The data source to be added. Its reference system needs to match the reference system of the DomainBuilder.
-
fixDensityBelow(depth=None)¶ Defines the depth below which the density anomaly is set to a given value. If no value is given zero is assumed.
Parameters: depth ( float) – depth below which the density is fixed. If not set, no constraint at depth is applied.
-
fixSusceptibilityBelow(depth=None)¶ Defines the depth below which the susceptibility anomaly is set to a given value. If no value is given zero is assumed.
Parameters: depth ( float) – depth below which the susceptibility is fixed. If not set, no constraint at depth is applied.
-
fixVelocityBelow(depth=None)¶ Defines the depth below which the velocity and Q index is set to a given value. If no value is given zero is assumed.
Parameters: depth ( float) – depth below which the velocity is fixed. If not set, no constraint at depth is applied.
-
getBackgroundMagneticFluxDensity()¶ Returns the background magnetic flux density.
-
getDomain()¶ Returns a domain that spans the data area plus padding.
The domain is created the first time this method is called, subsequent calls return the same domain so anything that affects the domain (such as padding) needs to be set beforehand.
Returns: The escript domain for this data source Return type: esys.escript.Domain
-
getGravitySurveys()¶ Returns a list of gravity surveys, see
getSurveysfor details.
-
getMagneticSurveys()¶ Returns a list of magnetic surveys, see
getSurveysfor details.
-
getReferenceSystem()¶ returns the reference coordinate system
Return type: ReferenceSystem
-
getSetDensityMask()¶ Returns the density mask data object which is non-zero for cells whose density value is fixed, zero otherwise.
-
getSetSusceptibilityMask()¶ Returns the susceptibility mask data object which is non-zero for cells whose susceptibility value is fixed, zero otherwise.
-
getSurveys(datatype, tags=None)¶ Returns a list of
Dataobjects for all surveys of typedatatypeavailable to this domain builder. If a list oftagsis given only data sources whose tag matches the tag list are returned.Returns: List of surveys which are tuples (anomaly,error). Return type: list
-
getTags()¶ returns a list of all tags in use by the attached data sources. The list may be empty.
-
setBackgroundMagneticFluxDensity(B)¶ Sets the background magnetic flux density B=(B_East, B_North, B_Vertical)
-
setElementPadding(pad_x=None, pad_y=None, pad_lat=None, pad_lon=None)¶ Sets the amount of padding around the dataset in number of elements (cells).
When the domain is constructed
pad_x(pad_y) elements are added on each side of the x- (y-) dimension. The arguments must be non-negative.Parameters: - pad_x (
int) – Padding per side in x direction (default: no padding) - pad_y (
int) – Padding per side in y direction (default: no padding)
Note: pad_yis ignored for 2-dimensional datasets.- pad_x (
-
setFractionalPadding(pad_x=None, pad_y=None, pad_lat=None, pad_lon=None)¶ Sets the amount of padding around the dataset as a fraction of the dataset side lengths.
For example, calling
setFractionalPadding(0.2, 0.1)with a data source of size 10x20 will result in the padded data set size 14x24 (10*(1+2*0.2), 20*(1+2*0.1))Parameters: - pad_x (
float) – Padding per side in x direction (default: no padding) - pad_y (
float) – Padding per side in y direction (default: no padding) - pad_lat (
float) – Padding per side in latitudinal direction (default: no padding) - pad_lon (
float) – Padding per side in longitudinal direction (default: no padding)
Note: pad_yis ignored for 2-dimensional domains.- pad_x (
-
setGeoPadding(pad_lat=None, pad_lon=None)¶ Sets the amount of padding around the dataset in longitude and latitude.
The final domain size will be the extent in the latitudinal (in longitudinal) direction of the dataset plus twice the value of
pad_lat(pad_lon). The arguments must be non-negative.Parameters: - pad_lat (
floatin units of degree) – Padding per side in latitudinal direction (default: 0) - pad_lon (
floatin units of degree) – Padding per side in longitudinal direction (default: 0)
Note: pad_lonis ignored for 2-dimensional domains.Note: this function can only be used if the reference system is not Cartesian
- pad_lat (
-
setPadding(pad_x=None, pad_y=None, pad_lat=None, pad_lon=None)¶ Sets the amount of padding around the dataset in absolute length units.
The final domain size will be the length in x (in y) of the dataset plus twice the value of
pad_x(pad_y). The arguments must be non-negative.Parameters: - pad_x (
floatin units of length (meter)) – Padding per side in x direction (default: no padding) - pad_y (
floatin units of length (meter)) – Padding per side in y direction (default: no padding)
Note: pad_yis ignored for 2-dimensional domains.Note: this function can only be used if the reference system is Cartesian
- pad_x (
-
setVerticalExtents(depth=40000.0, air_layer=10000.0, num_cells=25)¶ This method sets the target domain parameters for the vertical dimension.
Parameters: - depth (
float) – Depth of the domain (in meters) - air_layer (
float) – Depth of the layer above sea level (in meters) - num_cells (
int) – Number of domain elements for the entire vertical dimension
- depth (
-
-
class
esys.downunder.ErMapperData(data_type, headerfile, datafile=None, altitude=0.0, error=None, scale_factor=None, null_value=None, reference_system=None)¶ Bases:
esys.downunder.datasources.DataSourceData Source for ER Mapper raster data. Note that this class only accepts a very specific type of ER Mapper data input and will raise an exception if other data is found.
-
__init__(data_type, headerfile, datafile=None, altitude=0.0, error=None, scale_factor=None, null_value=None, reference_system=None)¶ Parameters: - data_type (
int) – type of data, must beGRAVITYorMAGNETIC - headerfile (
str) – ER Mapper header file (usually ends in .ers) - datafile (
str) – ER Mapper binary data file name. If not supplied the name of the header file without ‘.ers’ is assumed - altitude (
float) – altitude of measurements above ground in meters - error (
float) – constant value to use for the data uncertainties. If a value is supplied, it is scaled by the same factor as the measurements. If not provided the error is assumed to be 2 units for all measurements (i.e. 0.2 mGal and 2 nT for gravity and magnetic, respectively) - scale_factor (
float) – the measurements and error values are scaled by this factor. By default, gravity data is assumed to be given in 1e-6 m/s^2 (0.1 mGal), while magnetic data is assumed to be in 1e-9 T (1 nT). - null_value (
float) – value that is used in the file to mark undefined areas. This information is usually included in the file. - reference_system (
ReferenceSystem) – reference coordinate system to be used. For a Cartesian reference (default) the appropriate UTM transformation is applied.
Note: consistence in the reference coordinate system and the reference coordinate system used in the data source is not checked.
- data_type (
-
ACOUSTIC= 2¶
-
GRAVITY= 0¶
-
MAGNETIC= 1¶
-
MT= 3¶
-
getDataExtents()¶ returns ( (x0, y0), (nx, ny), (dx, dy) )
-
getDataType()¶ Returns the type of survey data managed by this source. Subclasses must return
GRAVITYorMAGNETICorACOUSTICas appropriate.
-
getHeightScale()¶ returns the height scale factor to convert from meters to the appropriate units of the reference system used.
Return type: float
-
getReferenceSystem()¶ returns the reference coordinate system
Return type: ReferenceSystem
-
getSubsamplingFactor()¶ Returns the subsampling factor that was set via
setSubsamplingFactor(see there).
-
getSurveyData(domain, origin, NE, spacing)¶ This method is called by the
DomainBuilderto retrieve the survey data asDataobjects on the given domain.Subclasses should return one or more
Dataobjects with survey data interpolated on the givenescriptdomain. The exact return type depends on the type of data.Parameters: - domain (
esys.escript.Domain) – the escript domain to use - origin (
tupleorlist) – the origin coordinates of the domain - NE (
tupleorlist) – the number of domain elements in each dimension - spacing (
tupleorlist) – the cell sizes (node spacing) in the domain
- domain (
-
getTags()¶ returns the list of tags
Return type: list
-
getUtmZone()¶ All data source coordinates are converted to UTM (Universal Transverse Mercator) in order to have useful domain extents. Subclasses should implement this method and return the UTM zone number of the projected coordinates.
-
hasTag(tag)¶ returns true if the data set has tag
tagReturn type: bool
-
setSubsamplingFactor(f)¶ Sets the data subsampling factor (default=1).
The factor is applied in all dimensions. For example a 2D dataset with 300 x 150 data points will be reduced to 150 x 75 when a subsampling factor of 2 is used. This becomes important when adding data of varying resolution to a
DomainBuilder.
-
-
class
esys.downunder.ForwardModel¶ Bases:
objectAn abstract forward model that can be plugged into a cost function. Subclasses need to implement
getDefect(),getGradient(), and possiblygetArguments()and ‘getCoordinateTransformation’.-
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
-
getArguments(x)¶
-
getCoordinateTransformation()¶
-
getDefect(x, *args)¶
-
getGradient(x, *args)¶
-
-
class
esys.downunder.ForwardModelWithPotential(domain, w, data, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Bases:
esys.downunder.forwardmodels.base.ForwardModelBase class for a forward model using a potential such as magnetic or gravity. It defines a cost function:
defect = 1/2 sum_s integrate( ( weight_i[s] * ( r_i - data_i[s] ) )**2 )where s runs over the survey, weight_i are weighting factors, data_i are the data, and r_i are the results produced by the forward model. It is assumed that the forward model is produced through postprocessing of the solution of a potential PDE.
-
__init__(domain, w, data, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ initializes a new forward model with potential.
Parameters: - domain (
Domain) – domain of the model - w (
Vectoror list ofVector) – data weighting factors - data (
Vectoror list ofVector) – data - coordinates (
ReferenceSystemorSpatialCoordinateTransformation) – defines coordinate system to be used - fixPotentialAtBottom (
bool) – if true potential is fixed to zero at the bottom of the domain in addition to the top. - tol (positive
float) – tolerance of underlying PDE
- domain (
-
getArguments(x)¶
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getData()¶ Returns the data
Return type: listofData
-
getDataFunctionSpace()¶ Returns the
FunctionSpaceof the dataReturn type: FunctionSpace
-
getDefect(x, *args)¶
-
getDefectGradient(result)¶
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(x, *args)¶
-
getMisfitWeights()¶ Returns the weights of the misfit function
Return type: listofData
-
getSurvey(index=None)¶ Returns the pair (data_index, weight_index), where data_i is the data of survey i, weight_i is the weighting factor for survey i. If index is None, all surveys will be returned in a pair of lists.
-
-
class
esys.downunder.FunctionJob(fn, *args, **kwargs)¶ Bases:
esys.escriptcore.splitworld.JobTakes a python function (with only self and keyword params) to be called as the work method
-
__init__(fn, *args, **kwargs)¶ It ignores all of its parameters, except that, it requires the following as keyword arguments
Variables: - domain – Domain to be used as the basis for all
Dataand PDEs in this Job. - jobid – sequence number of this job. The first job has id=1
- domain – Domain to be used as the basis for all
-
clearExports()¶ Remove exported values from the map
-
clearImports()¶ Remove imported values from their map
-
declareImport(name)¶ Adds name to the list of imports
-
exportValue(name, v)¶ Make value v available to other Jobs under the label name. name must have already been registered with the SplitWorld instance. For use inside the work() method.
Variables: - name – registered label for exported value
- v – value to be imported
-
setImportValue(name, v)¶ Use to make a value available to the job (ie called from outside the job)
Variables: - name – label used to identify this import
- v – value to be imported
-
work()¶ Need to be overloaded for the job to actually do anthing. A return value of True indicates this job thinks it is done. A return value of False indicates work still to be done
-
-
class
esys.downunder.GeodeticCoordinateTransformation(domain, reference=<esys.downunder.coordinates.GeodeticReferenceSystem object>)¶ Bases:
esys.downunder.coordinates.SpatialCoordinateTransformationA geodetic coordinate transformation
-
__init__(domain, reference=<esys.downunder.coordinates.GeodeticReferenceSystem object>)¶ set up the orthogonal coordinate transformation.
Parameters: - domain (
esys.escript.AbstractDomain) – domain in the domain of the coordinate transformation - reference (
ReferenceSystem) – the reference system
- domain (
-
getDomain()¶ returns the domain of the coordinate transformation.
Return type: esys.escript.AbstractDomain
-
getGradient(u)¶ returns the gradient of a scalar function in direction of the coordinate axis.
Return type: esys.escript.Vector
-
getReferenceSystem()¶ returns the reference system used to to define the coordinate transformation
Return type: ReferenceSystem
-
getScalingFactors()¶ returns the scaling factors
Return type: esys.escript.Vector
-
getVolumeFactor()¶ returns the volume factor for the coordinate transformation
Return type: esys.escript.Scalar
-
isCartesian()¶ returns
Trueif the scaling factors (and the volume factor) are equal to 1Return type: bool
-
isTheSame(other)¶ test if argument
otherdefines the same coordinate transformationParameters: other ( SpatialCoordinateTransformation) – a second coordinate transformationReturns: Trueif other defines then same coordinate transformationReturn type: bool
-
-
class
esys.downunder.GeodeticReferenceSystem(a=6378137.0, f=0.0033528106647474805, angular_unit=0.017453292519943295, height_unit=1000.0, name='WGS84')¶ Bases:
esys.downunder.coordinates.ReferenceSystemIdentifies a Geodetic coordinate system
-
__init__(a=6378137.0, f=0.0033528106647474805, angular_unit=0.017453292519943295, height_unit=1000.0, name='WGS84')¶ initializes a geodetic reference system
Parameters: - a (positive
double) – semi-major axis in meter - f (non-negative
double, less than one) – flattening - name (
str) – name of the reference system - angular_unit (positive
double) – factor to scale the unit of latitude and longitude to radians. - height_unit (positive
double) – factor to scale the unit of latitude and longitude to radians.
- a (positive
-
createTransformation(domain)¶ creates an appropriate coordinate transformation on a given domain
Parameters: domain ( esys.escript.AbstractDomain) – domain of transformationReturn type: SpatialCoordinateTransformation
-
getAngularUnit()¶ returns the angular unit
-
getFlattening()¶ returns the flattening
-
getHeightUnit()¶ returns the height unit
-
getName()¶ returns the name of the reference system
-
getSemiMajorAxis()¶ returns the length of semi major axis
-
getSemiMinorAxis()¶ returns the length of semi minor axis
-
isCartesian()¶ returns if the reference system is Cartesian
Return type: bool
-
isTheSame(other)¶ test if
otherdefines the same reference systemParameters: other ( ReferenceSystem) – a second reference systemReturns: Trueif other defines then same reference systemReturn type: boolNote
two
GeodeticReferenceSystemare considered to be the same if the use the same semi major axis, the same flattening and the same angular unit.
-
-
class
esys.downunder.GravityInversion(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ Bases:
esys.downunder.inversions.InversionDriverDriver class to perform an inversion of Gravity (Bouguer) anomaly data. The class uses the standard
Regularizationclass for a single level set function,DensityMappingmapping, and the gravity forward modelGravityModel.-
__init__(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ creates an instance of an inversion driver.
Parameters: - solverclass ('AbstractMinimizer'.) – class of the solver to be used.
- self_demagnetization – if True self-demagnitization is applied.
- magnetic_intensity_data – if True magnetic intensity is used in the cost function.
-
fixGravityPotentialAtBottom(status=False)¶ indicates to fix the gravity potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True gravity potential at the bottom is set to zero
-
fixMagneticPotentialAtBottom(status=True)¶ indicates to fix the magnetic potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True magnetic potential at the bottom is set to zero
-
getCostFunction()¶ returns the cost function of the inversion.
Return type: ‘InversionCostFunction’
-
getDomain()¶ returns the domain of the inversion
Return type: Domain
-
getLevelSetFunction()¶ returns the level set function as solution of the optimization problem
Return type: Data
-
getSolver()¶ The solver to be used in the inversion process. See the minimizers module for available solvers. By default, the L-BFGS minimizer is used.
Return type: ‘AbstractMinimizer’.
-
isSetUp()¶ returns True if the inversion is set up and is ready to run.
Return type: bool
-
run()¶ Executes the inversion.
Returns: physical parameters as result of the inversion Return type: listof physical parameters or a physical parameter
-
setCostFunction(costfunction)¶ sets the cost function of the inversion. This function needs to be called before the inversion iteration can be started.
Parameters: costfunction ('InversionCostFunction') – domain of the inversion
-
setInitialGuess(rho=None)¶ set the initial guess rho for density the inversion iteration. If no rho present then an appropriate initial guess is chosen.
Parameters: rho ( Scalar) – initial value for the density anomaly.
-
setSolverCallback(callback=None)¶ Sets the callback function which is called after every solver iteration.
-
setSolverMaxIterations(maxiter=None)¶ Sets the maximum number of solver iterations to run. If
maxiteris reached the iteration is terminated andMinimizerMaxIterReachedis thrown.Parameters: maxiter (positive int) – maximum number of iteration steps.
-
setSolverTolerance(m_tol=None, J_tol=None)¶ Sets the error tolerance for the solver. An acceptable solution is considered to be found once the tolerance is reached.
Parameters: - m_tol (
floatorNone) – tolerance for changes to level set function. IfNonechanges to the level set function are not checked for convergence during iteration. - J_tol (
floatorNone) – tolerance for changes to cost function. IfNonechanges to the cost function are not checked for convergence during iteration.
Note: if both arguments are
Nonethe default setting m_tol=1e-4, J_tol=None is used.- m_tol (
-
setup(domainbuilder, rho0=None, drho=None, z0=None, beta=None, w0=None, w1=None, rho_at_depth=None)¶ Sets up the inversion parameters from a
DomainBuilder.Parameters: - domainbuilder (
DomainBuilder) – Domain builder object with gravity source(s) - rho0 (
floatorScalar) – reference density, seeDensityMapping. If not specified, zero is used. - drho (
floatorScalar) – density scale, seeDensityMapping. If not specified, 2750kg/m^3 is used. - z0 (
floatorScalar) – reference depth for depth weighting, seeDensityMapping. If not specified, zero is used. - beta (
floatorScalar) – exponent for depth weighting, seeDensityMapping. If not specified, zero is used. - w0 (
Scalarorfloat) – weighting factor for level set term regularization. If not set zero is assumed. - w1 (
Vectoror list offloat) – weighting factor for the gradient term in the regularization. If not set zero is assumed - rho_at_depth (
floatorNone) – value for density at depth, seeDomainBuilder.
- domainbuilder (
-
siloWriterCallback(k, x, Jx, g_Jx, norm_dJ=None, norm_dx=None)¶ callback function that can be used to track the solution
Parameters: - k – iteration count
- x – current approximation
- Jx – value of cost function
- g_Jx – gradient of f at x
-
-
class
esys.downunder.GravityModel(domain, w, g, gravity_constant=6.6742e-11, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Bases:
esys.downunder.forwardmodels.base.ForwardModelWithPotentialForward Model for gravity inversion as described in the inversion cookbook.
-
__init__(domain, w, g, gravity_constant=6.6742e-11, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Creates a new gravity model on the given domain with one or more surveys (w, g).
Parameters: - domain (
Domain) – domain of the model - w (
Vectoror list ofVector) – data weighting factors - g (
Vectoror list ofVector) – gravity anomaly data - coordinates (ReferenceSystem` or
SpatialCoordinateTransformation) – defines coordinate system to be used - tol (positive
float) – tolerance of underlying PDE - fixPotentialAtBottom (
bool) – if true potential is fixed to zero at the base of the domain in addition to the top
Note: It is advisable to call rescaleWeights() to rescale weights before starting the inversion.
- domain (
-
getArguments(rho)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: rho ( Scalar) – a suggestion for the density distributionReturns: gravity potential and corresponding gravity field. Return type: Scalar,Vector
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getData()¶ Returns the data
Return type: listofData
-
getDataFunctionSpace()¶ Returns the
FunctionSpaceof the dataReturn type: FunctionSpace
-
getDefect(rho, phi, gravity_force)¶ Returns the value of the defect
Parameters: - rho (
Scalar) – density distribution - phi (
Scalar) – corresponding potential - gravity_force (
Vector) – gravity force
Return type: float- rho (
-
getDefectGradient(result)¶
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(rho, phi, gravity_force)¶ Returns the gradient of the defect with respect to density.
Parameters: - rho (
Scalar) – density distribution - phi (
Scalar) – corresponding potential - gravity_force (
Vector) – gravity force
Return type: Scalar- rho (
-
getMisfitWeights()¶ Returns the weights of the misfit function
Return type: listofData
-
getPotential(rho)¶ Calculates the gravity potential for a given density distribution.
Parameters: rho ( Scalar) – a suggestion for the density distributionReturns: gravity potential Return type: Scalar
-
getSurvey(index=None)¶ Returns the pair (data_index, weight_index), where data_i is the data of survey i, weight_i is the weighting factor for survey i. If index is None, all surveys will be returned in a pair of lists.
-
rescaleWeights(scale=1.0, rho_scale=1.0)¶ rescales the weights such that
sum_s integrate( ( w_i[s] *g_i[s]) (w_j[s]*1/L_j) * L**2 * 4*pi*G*rho_scale )=scale
Parameters: - scale (positive
float) – scale of data weighting factors - rho_scale (
Scalar) – scale of density.
- scale (positive
-
-
class
esys.downunder.HTIWave(domain, v_p, v_s, wavelet, source_tag, source_vector=[1.0, 0.0, 0.0], eps=0.0, gamma=0.0, delta=0.0, rho=1.0, dt=None, u0=None, v0=None, absorption_zone=None, absorption_cut=0.01, lumping=True, disable_fast_assemblers=False)¶ Bases:
esys.downunder.seismic.WaveBaseSolving the HTI wave equation (along the x_0 axis)
Note: In case of a two dimensional domain a horizontal domain is considered, i.e. the depth component is dropped. -
__init__(domain, v_p, v_s, wavelet, source_tag, source_vector=[1.0, 0.0, 0.0], eps=0.0, gamma=0.0, delta=0.0, rho=1.0, dt=None, u0=None, v0=None, absorption_zone=None, absorption_cut=0.01, lumping=True, disable_fast_assemblers=False)¶ initialize the VTI wave solver
Parameters: - domain (
Domain) – domain of the problem - v_p (
escript.Scalar) – vertical p-velocity field - v_s (
escript.Scalar) – vertical s-velocity field - wavelet (
Wavelet) – wavelet to describe the time evolution of source term - source_tag ('str' or 'int') – tag of the source location
- source_vector – source orientation vector
- eps – first Thompsen parameter
- delta – second Thompsen parameter
- gamma – third Thompsen parameter
- rho – density
- dt – time step size. If not present a suitable time step size is calculated.
- u0 – initial solution. If not present zero is used.
- v0 – initial solution change rate. If not present zero is used.
- absorption_zone – thickness of absorption zone
- absorption_cut – boundary value of absorption decay factor
- lumping – if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
- disable_fast_assemblers – if True, forces use of slower and more general PDE assemblers
- domain (
-
getTimeStepSize()¶
-
setQ(q)¶ sets the PDE q value
Parameters: q – the value to set
-
update(t)¶ returns the solution for the next time marker t which needs to greater than the time marker from the previous call.
-
-
class
esys.downunder.InversionCostFunction(regularization, mappings, forward_models)¶ Bases:
esys.downunder.costfunctions.MeteredCostFunctionClass to define cost function J(m) for inversion with one or more forward models based on a multi-valued level set function m:
J(m) = J_reg(m) + sum_f mu_f * J_f(p)
where J_reg(m) is the regularization and cross gradient component of the cost function applied to a level set function m, J_f(p) are the data defect cost functions involving a physical forward model using the physical parameter(s) p and mu_f is the trade-off factor for model f.
A forward model depends on a set of physical parameters p which are constructed from components of the level set function m via mappings.
- Example 1 (single forward model):
- m=Mapping() f=ForwardModel() J=InversionCostFunction(Regularization(), m, f)
- Example 2 (two forward models on a single valued level set)
m0=Mapping() m1=Mapping() f0=ForwardModel() f1=ForwardModel()
J=InversionCostFunction(Regularization(), mappings=[m0, m1], forward_models=[(f0, 0), (f1,1)])
- Example 3 (two forward models on 2-valued level set)
m0=Mapping() m1=Mapping() f0=ForwardModel() f1=ForwardModel()
J=InversionCostFunction(Regularization(self.numLevelSets=2), mappings=[(m0,0), (m1,0)], forward_models=[(f0, 0), (f1,1)])
Note: If provides_inverse_Hessian_approximation is true, then the class provides an approximative inverse of the Hessian operator. -
__init__(regularization, mappings, forward_models)¶ constructor for the cost function. Stores the supplied object references and sets default weights.
Parameters: - regularization (
Regularization) – the regularization part of the cost function - mappings (
Mappingorlist) – the mappings to calculate physical parameters from the regularization. This is a list of 2-tuples (map, i) where the first component map defines aMappingand the second component i defines the index of the component of level set function to be used to calculate the mapping. Items in the list may also be justMappingobjects in which case the entire level set function is fed into theMapping(typically used for a single-component level set function. - forward_models – the forward models involved in the calculation
of the cost function. This is a list of 2-tuples
(f, ii) where the first component f defines a
ForwardModeland the second component ii a list of indexes referring to the physical parameters in themappingslist. The 2-tuple can be replaced by aForwardModelif themappingslist has a single entry. - forward_models –
ForwardModelorlist
- regularization (
-
createLevelSetFunction(*props)¶ returns an instance of an object used to represent a level set function initialized with zeros. Components can be overwritten by physical properties
props. If present entries must correspond to themappingsarguments in the constructor. UseNonefor properties for which no value is given.
-
getArguments(x)¶ returns precalculated values that are shared in the calculation of f(x) and grad f(x) and the Hessian operator
Note
The tuple returned by this call will be passed back to this
CostFunctionin other calls(eg:getGradient). Its contents are not specified at this level because no code, other than theCostFunctionwhich created it, will be interacting with it. That is, the implementor can put whatever information they find useful in it.Parameters: x (x-type) – location of derivative Return type: tuple
-
getComponentValues(m, *args)¶
-
getDomain()¶ returns the domain of the cost function
Return type: Domain
-
getDualProduct(x, r)¶ returns the dual product of
xandrReturn type: float
-
getForwardModel(idx=None)¶ returns the idx-th forward model.
Parameters: idx ( int) – model index. If cost function contains one model onlyidxcan be omitted.
-
getGradient(x, *args)¶ returns the gradient of f at x using the precalculated values for x.
Parameters: - x (x-type) – location of derivative
- args – pre-calculated values for
xfromgetArguments()
Return type: r-type
-
getInverseHessianApproximation(x, r, *args)¶ returns an approximative evaluation p of the inverse of the Hessian operator of the cost function for a given gradient r at a given location x: H(x) p = r
Note
In general it is assumed that the Hessian H(x) needs to be calculate in each call for a new location x. However, the solver may suggest that this is not required, typically when the iteration is close to completeness.
Parameters: - x (x-type) – location of Hessian operator to be evaluated.
- r (r-type) – a given gradient
- args – pre-calculated values for
xfromgetArguments()
Return type: x-type
-
getNorm(x)¶ returns the norm of
xReturn type: float
-
getNumTradeOffFactors()¶ returns the number of trade-off factors being used including the trade-off factors used in the regularization component.
Return type: int
-
getProperties(m, return_list=False)¶ returns a list of the physical properties from a given level set function m using the mappings of the cost function.
Parameters: - m (
Data) – level set function - return_list (
bool) – ifTruea list is returned.
Return type: listofData- m (
-
getRegularization()¶ returns the regularization
Return type: Regularization
-
getTradeOffFactors(mu=None)¶ returns a list of the trade-off factors.
Return type: listoffloat
-
getTradeOffFactorsModels()¶ returns the trade-off factors for the forward models
Return type: floatorlistoffloat
-
getValue(x, *args)¶ returns the value f(x) using the precalculated values for x.
Parameters: x (x-type) – a solution approximation Return type: float
-
provides_inverse_Hessian_approximation= True¶
-
resetCounters()¶ resets all statistical counters
-
setTradeOffFactors(mu=None)¶ sets the trade-off factors for the forward model and regularization terms.
Parameters: mu ( listoffloat) – list of trade-off factors.
-
setTradeOffFactorsModels(mu=None)¶ sets the trade-off factors for the forward model components.
Parameters: mu ( floatin case of a single model or alistoffloatwith the length of the number of models.) – list of the trade-off factors. If not present ones are used.
-
setTradeOffFactorsRegularization(mu=None, mu_c=None)¶ sets the trade-off factors for the regularization component of the cost function, see
Regularizationfor details.Parameters: - mu – trade-off factors for the level-set variation part
- mu_c – trade-off factors for the cross gradient variation part
-
updateHessian()¶ notifies the class that the Hessian operator needs to be updated.
-
class
esys.downunder.InversionDriver(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ Bases:
objectBase class for running an inversion
-
__init__(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ creates an instance of an inversion driver.
Parameters: - solverclass ('AbstractMinimizer'.) – class of the solver to be used.
- self_demagnetization – if True self-demagnitization is applied.
- magnetic_intensity_data – if True magnetic intensity is used in the cost function.
-
fixGravityPotentialAtBottom(status=False)¶ indicates to fix the gravity potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True gravity potential at the bottom is set to zero
-
fixMagneticPotentialAtBottom(status=True)¶ indicates to fix the magnetic potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True magnetic potential at the bottom is set to zero
-
getCostFunction()¶ returns the cost function of the inversion.
Return type: ‘InversionCostFunction’
-
getDomain()¶ returns the domain of the inversion
Return type: Domain
-
getLevelSetFunction()¶ returns the level set function as solution of the optimization problem
Return type: Data
-
getSolver()¶ The solver to be used in the inversion process. See the minimizers module for available solvers. By default, the L-BFGS minimizer is used.
Return type: ‘AbstractMinimizer’.
-
isSetUp()¶ returns True if the inversion is set up and is ready to run.
Return type: bool
-
run()¶ Executes the inversion.
Returns: physical parameters as result of the inversion Return type: listof physical parameters or a physical parameter
-
setCostFunction(costfunction)¶ sets the cost function of the inversion. This function needs to be called before the inversion iteration can be started.
Parameters: costfunction ('InversionCostFunction') – domain of the inversion
-
setInitialGuess(*props)¶ Sets the initial guess for the inversion iteration. By default zero is used.
-
setSolverCallback(callback=None)¶ Sets the callback function which is called after every solver iteration.
-
setSolverMaxIterations(maxiter=None)¶ Sets the maximum number of solver iterations to run. If
maxiteris reached the iteration is terminated andMinimizerMaxIterReachedis thrown.Parameters: maxiter (positive int) – maximum number of iteration steps.
-
setSolverTolerance(m_tol=None, J_tol=None)¶ Sets the error tolerance for the solver. An acceptable solution is considered to be found once the tolerance is reached.
Parameters: - m_tol (
floatorNone) – tolerance for changes to level set function. IfNonechanges to the level set function are not checked for convergence during iteration. - J_tol (
floatorNone) – tolerance for changes to cost function. IfNonechanges to the cost function are not checked for convergence during iteration.
Note: if both arguments are
Nonethe default setting m_tol=1e-4, J_tol=None is used.- m_tol (
-
-
class
esys.downunder.IsostaticPressure(domain, p0=0.0, level0=0, gravity0=-9.81, background_density=2670.0, gravity_constant=6.6742e-11, coordinates=None, tol=1e-08)¶ Bases:
objectclass to calculate isostatic pressure field correction due to gravity forces
-
__init__(domain, p0=0.0, level0=0, gravity0=-9.81, background_density=2670.0, gravity_constant=6.6742e-11, coordinates=None, tol=1e-08)¶ Parameters: - domain (
Domain) – domain of the model - p0 (scalar
Dataorfloat) – pressure at level0 - background_density (
float) – defines background_density in kg/m^3 - coordinates (ReferenceSystem` or
SpatialCoordinateTransformation) – defines coordinate system to be used - tol (positive
float) – tolerance of underlying PDE - level0 (
float) – pressure for z>=`level0` is set to zero. - gravity0 (
float) – vertical background gravity atlevel0
- domain (
-
getPressure(g=None, rho=None)¶ return the pressure for gravity force anomaly
gand density anomalyrhoParameters: - g (
Vector) – gravity anomaly data - rho (
Scalar) – gravity anomaly data
Returns: pressure distribution
Return type: Scalar- g (
-
-
class
esys.downunder.Job(*args, **kwargs)¶ Bases:
objectDescribes a sequence of work to be carried out in a subworld. The instances of this class used in the subworlds will be constructed by the system. To do specific work, this class should be subclassed and the work() (and possibly __init__ methods overloaded). The majority of the work done by the job will be in the overloaded work() method. The work() method should retrieve values from the outside using importValue() and pass values to the rest of the system using exportValue(). The rest of the methods should be considered off limits.
-
__init__(*args, **kwargs)¶ It ignores all of its parameters, except that, it requires the following as keyword arguments
Variables: - domain – Domain to be used as the basis for all
Dataand PDEs in this Job. - jobid – sequence number of this job. The first job has id=1
- domain – Domain to be used as the basis for all
-
clearExports()¶ Remove exported values from the map
-
clearImports()¶ Remove imported values from their map
-
declareImport(name)¶ Adds name to the list of imports
-
exportValue(name, v)¶ Make value v available to other Jobs under the label name. name must have already been registered with the SplitWorld instance. For use inside the work() method.
Variables: - name – registered label for exported value
- v – value to be imported
-
setImportValue(name, v)¶ Use to make a value available to the job (ie called from outside the job)
Variables: - name – label used to identify this import
- v – value to be imported
-
work()¶ Need to be overloaded for the job to actually do anthing. A return value of True indicates this job thinks it is done. A return value of False indicates work still to be done
-
-
class
esys.downunder.JointGravityMagneticInversion(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ Bases:
esys.downunder.inversions.InversionDriverDriver class to perform a joint inversion of Gravity (Bouguer) and magnetic anomaly data. The class uses the standard
Regularizationclass for two level set functions with cross-gradient correlation,DensityMappingandSusceptibilityMappingmappings, the gravity forward modelGravityModeland the linear magnetic forward modelMagneticModel.-
__init__(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ creates an instance of an inversion driver.
Parameters: - solverclass ('AbstractMinimizer'.) – class of the solver to be used.
- self_demagnetization – if True self-demagnitization is applied.
- magnetic_intensity_data – if True magnetic intensity is used in the cost function.
-
DENSITY= 0¶
-
SUSCEPTIBILITY= 1¶
-
fixGravityPotentialAtBottom(status=False)¶ indicates to fix the gravity potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True gravity potential at the bottom is set to zero
-
fixMagneticPotentialAtBottom(status=True)¶ indicates to fix the magnetic potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True magnetic potential at the bottom is set to zero
-
getCostFunction()¶ returns the cost function of the inversion.
Return type: ‘InversionCostFunction’
-
getDomain()¶ returns the domain of the inversion
Return type: Domain
-
getLevelSetFunction()¶ returns the level set function as solution of the optimization problem
Return type: Data
-
getSolver()¶ The solver to be used in the inversion process. See the minimizers module for available solvers. By default, the L-BFGS minimizer is used.
Return type: ‘AbstractMinimizer’.
-
isSetUp()¶ returns True if the inversion is set up and is ready to run.
Return type: bool
-
run()¶ Executes the inversion.
Returns: physical parameters as result of the inversion Return type: listof physical parameters or a physical parameter
-
setCostFunction(costfunction)¶ sets the cost function of the inversion. This function needs to be called before the inversion iteration can be started.
Parameters: costfunction ('InversionCostFunction') – domain of the inversion
-
setInitialGuess(rho=None, k=None)¶ set the initial guess rho for density and k for susceptibility for the inversion iteration.
Parameters: - rho (
Scalar) – initial value for the density anomaly. - k (
Scalar) – initial value for the susceptibility anomaly.
- rho (
-
setSolverCallback(callback=None)¶ Sets the callback function which is called after every solver iteration.
-
setSolverMaxIterations(maxiter=None)¶ Sets the maximum number of solver iterations to run. If
maxiteris reached the iteration is terminated andMinimizerMaxIterReachedis thrown.Parameters: maxiter (positive int) – maximum number of iteration steps.
-
setSolverTolerance(m_tol=None, J_tol=None)¶ Sets the error tolerance for the solver. An acceptable solution is considered to be found once the tolerance is reached.
Parameters: - m_tol (
floatorNone) – tolerance for changes to level set function. IfNonechanges to the level set function are not checked for convergence during iteration. - J_tol (
floatorNone) – tolerance for changes to cost function. IfNonechanges to the cost function are not checked for convergence during iteration.
Note: if both arguments are
Nonethe default setting m_tol=1e-4, J_tol=None is used.- m_tol (
-
setup(domainbuilder, rho0=None, drho=None, rho_z0=None, rho_beta=None, k0=None, dk=None, k_z0=None, k_beta=None, w0=None, w1=None, w_gc=None, rho_at_depth=None, k_at_depth=None)¶ Sets up the inversion from an instance
domainbuilderof aDomainBuilder. Gravity and magnetic data attached to thedomainbuilderare considered in the inversion. If magnetic data are given as scalar it is assumed that values are collected in direction of the background magnetic field.Parameters: - domainbuilder (
DomainBuilder) – Domain builder object with gravity source(s) - rho0 (
floatorScalar) – reference density, seeDensityMapping. If not specified, zero is used. - drho (
floatorScalar) – density scale, seeDensityMapping. If not specified, 2750kg/m^3 is used. - rho_z0 (
floatorScalar) – reference depth for depth weighting for density, seeDensityMapping. If not specified, zero is used. - rho_beta (
floatorScalar) – exponent for depth weighting for density, seeDensityMapping. If not specified, zero is used. - k0 (
floatorScalar) – reference susceptibility, seeSusceptibilityMapping. If not specified, zero is used. - dk (
floatorScalar) – susceptibility scale, seeSusceptibilityMapping. If not specified, 2750kg/m^3 is used. - k_z0 (
floatorScalar) – reference depth for depth weighting for susceptibility, seeSusceptibilityMapping. If not specified, zero is used. - k_beta (
floatorScalar) – exponent for depth weighting for susceptibility, seeSusceptibilityMapping. If not specified, zero is used. - w0 (
es.Dataorndarrayof shape (2,)) – weighting factors for level set term regularization, seeRegularization. If not set zero is assumed. - w1 (
es.Dataorndarrayof shape (2,DIM)) – weighting factor for the gradient term in the regularization seeRegularization. If not set zero is assumed - w_gc (
Scalarorfloat) – weighting factor for the cross gradient term in the regularization, seeRegularization. If not set one is assumed - k_at_depth (
floatorNone) – value for susceptibility at depth, seeDomainBuilder. - rho_at_depth (
floatorNone) – value for density at depth, seeDomainBuilder.
- domainbuilder (
-
siloWriterCallback(k, x, Jx, g_Jx, norm_dJ=None, norm_dx=None)¶ callback function that can be used to track the solution
Parameters: - k – iteration count
- x – current approximation
- Jx – value of cost function
- g_Jx – gradient of f at x
-
-
class
esys.downunder.LinearMapping(a=1.0, p0=0.0)¶ Bases:
esys.downunder.mappings.MappingMaps a parameter by a linear transformation p = a * m + p0
-
__init__(a=1.0, p0=0.0)¶ Initialize self. See help(type(self)) for accurate signature.
-
getDerivative(m)¶ returns the value for the derivative of the mapping for m
-
getInverse(p)¶ returns the value of the inverse of the mapping for s
-
getTypicalDerivative()¶ returns a typical value for the derivative
-
getValue(m)¶ returns the value of the mapping for m
-
-
class
esys.downunder.LinearPDE(domain, numEquations=None, numSolutions=None, isComplex=False, debug=False)¶ Bases:
esys.escriptcore.linearPDEs.LinearProblemThis class is used to define a general linear, steady, second order PDE for an unknown function u on a given domain defined through a
Domainobject.For a single PDE having a solution with a single component the linear PDE is defined in the following form:
-(grad(A[j,l]+A_reduced[j,l])*grad(u)[l]+(B[j]+B_reduced[j])u)[j]+(C[l]+C_reduced[l])*grad(u)[l]+(D+D_reduced)=-grad(X+X_reduced)[j,j]+(Y+Y_reduced)
where grad(F) denotes the spatial derivative of F. Einstein’s summation convention, ie. summation over indexes appearing twice in a term of a sum performed, is used. The coefficients A, B, C, D, X and Y have to be specified through
Dataobjects inFunctionand the coefficients A_reduced, B_reduced, C_reduced, D_reduced, X_reduced and Y_reduced have to be specified throughDataobjects inReducedFunction. It is also allowed to use objects that can be converted into suchDataobjects. A and A_reduced are rank two, B, C, X, B_reduced, C_reduced and X_reduced are rank one and D, D_reduced, Y and Y_reduced are scalar.The following natural boundary conditions are considered:
n[j]*((A[i,j]+A_reduced[i,j])*grad(u)[l]+(B+B_reduced)[j]*u)+(d+d_reduced)*u=n[j]*(X[j]+X_reduced[j])+y
where n is the outer normal field. Notice that the coefficients A, A_reduced, B, B_reduced, X and X_reduced are defined in the PDE. The coefficients d and y are each a scalar in
FunctionOnBoundaryand the coefficients d_reduced and y_reduced are each a scalar inReducedFunctionOnBoundary.Constraints for the solution prescribe the value of the solution at certain locations in the domain. They have the form
u=r where q>0
r and q are each scalar where q is the characteristic function defining where the constraint is applied. The constraints override any other condition set by the PDE or the boundary condition.
The PDE is symmetrical if
A[i,j]=A[j,i] and B[j]=C[j] and A_reduced[i,j]=A_reduced[j,i] and B_reduced[j]=C_reduced[j]
For a system of PDEs and a solution with several components the PDE has the form
-grad((A[i,j,k,l]+A_reduced[i,j,k,l])*grad(u[k])[l]+(B[i,j,k]+B_reduced[i,j,k])*u[k])[j]+(C[i,k,l]+C_reduced[i,k,l])*grad(u[k])[l]+(D[i,k]+D_reduced[i,k]*u[k] =-grad(X[i,j]+X_reduced[i,j])[j]+Y[i]+Y_reduced[i]
A and A_reduced are of rank four, B, B_reduced, C and C_reduced are each of rank three, D, D_reduced, X_reduced and X are each of rank two and Y and Y_reduced are of rank one. The natural boundary conditions take the form:
n[j]*((A[i,j,k,l]+A_reduced[i,j,k,l])*grad(u[k])[l]+(B[i,j,k]+B_reduced[i,j,k])*u[k])+(d[i,k]+d_reduced[i,k])*u[k]=n[j]*(X[i,j]+X_reduced[i,j])+y[i]+y_reduced[i]
The coefficient d is of rank two and y is of rank one both in
FunctionOnBoundary. The coefficients d_reduced is of rank two and y_reduced is of rank one both inReducedFunctionOnBoundary.Constraints take the form
u[i]=r[i] where q[i]>0
r and q are each rank one. Notice that at some locations not necessarily all components must have a constraint.
The system of PDEs is symmetrical if
- A[i,j,k,l]=A[k,l,i,j]
- A_reduced[i,j,k,l]=A_reduced[k,l,i,j]
- B[i,j,k]=C[k,i,j]
- B_reduced[i,j,k]=C_reduced[k,i,j]
- D[i,k]=D[i,k]
- D_reduced[i,k]=D_reduced[i,k]
- d[i,k]=d[k,i]
- d_reduced[i,k]=d_reduced[k,i]
LinearPDEalso supports solution discontinuities over a contact region in the domain. To specify the conditions across the discontinuity we are using the generalised flux J which, in the case of a system of PDEs and several components of the solution, is defined asJ[i,j]=(A[i,j,k,l]+A_reduced[[i,j,k,l])*grad(u[k])[l]+(B[i,j,k]+B_reduced[i,j,k])*u[k]-X[i,j]-X_reduced[i,j]
For the case of single solution component and single PDE J is defined as
J[j]=(A[i,j]+A_reduced[i,j])*grad(u)[j]+(B[i]+B_reduced[i])*u-X[i]-X_reduced[i]
In the context of discontinuities n denotes the normal on the discontinuity pointing from side 0 towards side 1 calculated from
FunctionSpace.getNormalofFunctionOnContactZero. For a system of PDEs the contact condition takes the formn[j]*J0[i,j]=n[j]*J1[i,j]=(y_contact[i]+y_contact_reduced[i])- (d_contact[i,k]+d_contact_reduced[i,k])*jump(u)[k]
where J0 and J1 are the fluxes on side 0 and side 1 of the discontinuity, respectively. jump(u), which is the difference of the solution at side 1 and at side 0, denotes the jump of u across discontinuity along the normal calculated by
jump. The coefficient d_contact is of rank two and y_contact is of rank one both inFunctionOnContactZeroorFunctionOnContactOne. The coefficient d_contact_reduced is of rank two and y_contact_reduced is of rank one both inReducedFunctionOnContactZeroorReducedFunctionOnContactOne. In case of a single PDE and a single component solution the contact condition takes the formn[j]*J0_{j}=n[j]*J1_{j}=(y_contact+y_contact_reduced)-(d_contact+y_contact_reduced)*jump(u)
In this case the coefficient d_contact and y_contact are each scalar both in
FunctionOnContactZeroorFunctionOnContactOneand the coefficient d_contact_reduced and y_contact_reduced are each scalar both inReducedFunctionOnContactZeroorReducedFunctionOnContactOne.Typical usage:
p = LinearPDE(dom) p.setValue(A=kronecker(dom), D=1, Y=0.5) u = p.getSolution()
-
__init__(domain, numEquations=None, numSolutions=None, isComplex=False, debug=False)¶ Initializes a new linear PDE.
Parameters: - domain (
Domain) – domain of the PDE - numEquations – number of equations. If
Nonethe number of equations is extracted from the PDE coefficients. - numSolutions – number of solution components. If
Nonethe number of solution components is extracted from the PDE coefficients. - debug – if True debug information is printed
- domain (
-
addPDEToLumpedSystem(operator, a, b, c, hrz_lumping)¶ adds a PDE to the lumped system, results depend on domain
Parameters: - mat (
OperatorAdapter) – - rhs (
Data) – - a (
Data) – - b (
Data) – - c (
Data) – - hrz_lumping (
bool) –
- mat (
-
addPDEToRHS(righthandside, X, Y, y, y_contact, y_dirac)¶ adds a PDE to the right hand side, results depend on domain
Parameters: - mat (
OperatorAdapter) – - righthandside (
Data) – - X (
Data) – - Y (
Data) – - y (
Data) – - y_contact (
Data) – - y_dirac (
Data) –
- mat (
-
addPDEToSystem(operator, righthandside, A, B, C, D, X, Y, d, y, d_contact, y_contact, d_dirac, y_dirac)¶ adds a PDE to the system, results depend on domain
Parameters: - mat (
OperatorAdapter) – - rhs (
Data) – - A (
Data) – - B (
Data) – - C (
Data) – - D (
Data) – - X (
Data) – - Y (
Data) – - d (
Data) – - y (
Data) – - d_contact (
Data) – - y_contact (
Data) – - d_dirac (
Data) – - y_dirac (
Data) –
- mat (
-
addToRHS(rhs, data)¶ adds a PDE to the right hand side, results depend on domain
Parameters: - mat (
OperatorAdapter) – - righthandside (
Data) – - data (
list) –
- mat (
-
addToSystem(op, rhs, data)¶ adds a PDE to the system, results depend on domain
Parameters: - mat (
OperatorAdapter) – - rhs (
Data) – - data (
list) –
- mat (
-
alteredCoefficient(name)¶ Announces that coefficient
namehas been changed.Parameters: name ( string) – name of the coefficient affectedRaises: IllegalCoefficient – if nameis not a coefficient of the PDENote: if nameis q or r, the method will not trigger a rebuild of the system as constraints are applied to the solved system.
-
checkReciprocalSymmetry(name0, name1, verbose=True)¶ Tests two coefficients for reciprocal symmetry.
Parameters: - name0 (
str) – name of the first coefficient - name1 (
str) – name of the second coefficient - verbose (
bool) – if set to True or not present a report on coefficients which break the symmetry is printed
Returns: True if coefficients
name0andname1are reciprocally symmetric.Return type: bool- name0 (
-
checkSymmetricTensor(name, verbose=True)¶ Tests a coefficient for symmetry.
Parameters: - name (
str) – name of the coefficient - verbose (
bool) – if set to True or not present a report on coefficients which break the symmetry is printed.
Returns: True if coefficient
nameis symmetricReturn type: bool- name (
-
checkSymmetry(verbose=True)¶ Tests the PDE for symmetry.
Parameters: verbose ( bool) – if set to True or not present a report on coefficients which break the symmetry is printed.Returns: True if the PDE is symmetric Return type: boolNote: This is a very expensive operation. It should be used for degugging only! The symmetry flag is not altered.
-
createCoefficient(name)¶ Creates a
Dataobject corresponding to coefficientname.Returns: the coefficient nameinitialized to 0Return type: DataRaises: IllegalCoefficient – if nameis not a coefficient of the PDE
-
createOperator()¶ Returns an instance of a new operator.
-
createRightHandSide()¶ Returns an instance of a new right hand side.
-
createSolution()¶ Returns an instance of a new solution.
-
getCoefficient(name)¶ Returns the value of the coefficient
name.Parameters: name ( string) – name of the coefficient requestedReturns: the value of the coefficient Return type: DataRaises: IllegalCoefficient – if nameis not a coefficient of the PDE
-
getCurrentOperator()¶ Returns the operator in its current state.
-
getCurrentRightHandSide()¶ Returns the right hand side in its current state.
-
getCurrentSolution()¶ Returns the solution in its current state.
-
getDim()¶ Returns the spatial dimension of the PDE.
Returns: the spatial dimension of the PDE domain Return type: int
-
getDomain()¶ Returns the domain of the PDE.
Returns: the domain of the PDE Return type: Domain
-
getDomainStatus()¶ Return the status indicator of the domain
-
getFlux(u=None)¶ Returns the flux J for a given u.
J[i,j]=(A[i,j,k,l]+A_reduced[A[i,j,k,l]]*grad(u[k])[l]+(B[i,j,k]+B_reduced[i,j,k])u[k]-X[i,j]-X_reduced[i,j]
or
J[j]=(A[i,j]+A_reduced[i,j])*grad(u)[l]+(B[j]+B_reduced[j])u-X[j]-X_reduced[j]
Parameters: u ( Dataor None) – argument in the flux. If u is not present or equalsNonethe current solution is used.Returns: flux Return type: Data
-
getFunctionSpaceForCoefficient(name)¶ Returns the
FunctionSpaceto be used for coefficientname.Parameters: name ( string) – name of the coefficient enquiredReturns: the function space to be used for coefficient nameReturn type: FunctionSpaceRaises: IllegalCoefficient – if nameis not a coefficient of the PDE
-
getFunctionSpaceForEquation()¶ Returns the
FunctionSpaceused to discretize the equation.Returns: representation space of equation Return type: FunctionSpace
-
getFunctionSpaceForSolution()¶ Returns the
FunctionSpaceused to represent the solution.Returns: representation space of solution Return type: FunctionSpace
-
getNumEquations()¶ Returns the number of equations.
Returns: the number of equations Return type: intRaises: UndefinedPDEError – if the number of equations is not specified yet
-
getNumSolutions()¶ Returns the number of unknowns.
Returns: the number of unknowns Return type: intRaises: UndefinedPDEError – if the number of unknowns is not specified yet
-
getOperator()¶ Returns the operator of the linear problem.
Returns: the operator of the problem
-
getOperatorType()¶ Returns the current system type.
-
getRequiredOperatorType()¶ Returns the system type which needs to be used by the current set up.
-
getResidual(u=None)¶ Returns the residual of u or the current solution if u is not present.
Parameters: u ( Dataor None) – argument in the residual calculation. It must be representable inself.getFunctionSpaceForSolution(). If u is not present or equalsNonethe current solution is used.Returns: residual of u Return type: Data
-
getRightHandSide()¶ Returns the right hand side of the linear problem.
Returns: the right hand side of the problem Return type: Data
-
getShapeOfCoefficient(name)¶ Returns the shape of the coefficient
name.Parameters: name ( string) – name of the coefficient enquiredReturns: the shape of the coefficient nameReturn type: tupleofintRaises: IllegalCoefficient – if nameis not a coefficient of the PDE
-
getSolution()¶ Returns the solution of the PDE.
Returns: the solution Return type: Data
-
getSolverOptions()¶ Returns the solver options
Return type: SolverOptions
-
getSystem()¶ Returns the operator and right hand side of the PDE.
Returns: the discrete version of the PDE Return type: tupleofOperatorandData
-
getSystemStatus()¶ Return the domain status used to build the current system
-
hasCoefficient(name)¶ Returns True if
nameis the name of a coefficient.Parameters: name ( string) – name of the coefficient enquiredReturns: True if nameis the name of a coefficient of the general PDE, False otherwiseReturn type: bool
-
initializeSystem()¶ Resets the system clearing the operator, right hand side and solution.
-
insertConstraint(rhs_only=False)¶ Applies the constraints defined by q and r to the PDE.
Parameters: rhs_only ( bool) – if True only the right hand side is altered by the constraint
-
introduceCoefficients(**coeff)¶ Introduces new coefficients into the problem.
Use:
p.introduceCoefficients(A=PDECoef(…), B=PDECoef(…))
to introduce the coefficients A and B.
-
invalidateOperator()¶ Indicates the operator has to be rebuilt next time it is used.
-
invalidateRightHandSide()¶ Indicates the right hand side has to be rebuilt next time it is used.
-
invalidateSolution()¶ Indicates the PDE has to be resolved if the solution is requested.
-
invalidateSystem()¶ Announces that everything has to be rebuilt.
-
isComplex()¶ Returns true if this is a complex-valued LinearProblem, false if real-valued.
Return type: bool
-
isHermitian()¶ Checks if the pde is indicated to be Hermitian.
Returns: True if a Hermitian PDE is indicated, False otherwise Return type: boolNote: the method is equivalent to use getSolverOptions().isHermitian()
-
isOperatorValid()¶ Returns True if the operator is still valid.
-
isRightHandSideValid()¶ Returns True if the operator is still valid.
-
isSolutionValid()¶ Returns True if the solution is still valid.
-
isSymmetric()¶ Checks if symmetry is indicated.
Returns: True if a symmetric PDE is indicated, False otherwise Return type: boolNote: the method is equivalent to use getSolverOptions().isSymmetric()
-
isSystemValid()¶ Returns True if the system (including solution) is still vaild.
-
isUsingLumping()¶ Checks if matrix lumping is the current solver method.
Returns: True if the current solver method is lumping Return type: bool
-
preservePreconditioner(preserve=True)¶ Notifies the PDE that the preconditioner should not be reset when making changes to the operator.
Building the preconditioner data can be quite expensive (e.g. for multigrid methods) so if it is known that changes to the operator are going to be minor calling this method can speed up successive PDE solves.
Note: Not all operator types support this. Parameters: preserve ( bool) – if True, preconditioner will be preserved, otherwise it will be reset when making changes to the operator, which is the default behaviour.
-
reduceEquationOrder()¶ Returns the status of order reduction for the equation.
Returns: True if reduced interpolation order is used for the representation of the equation, False otherwise Return type: bool
-
reduceSolutionOrder()¶ Returns the status of order reduction for the solution.
Returns: True if reduced interpolation order is used for the representation of the solution, False otherwise Return type: bool
-
resetAllCoefficients()¶ Resets all coefficients to their default values.
-
resetOperator()¶ Makes sure that the operator is instantiated and returns it initialized with zeros.
-
resetRightHandSide()¶ Sets the right hand side to zero.
-
resetRightHandSideCoefficients()¶ Resets all coefficients defining the right hand side
-
resetSolution()¶ Sets the solution to zero.
-
setDebug(flag)¶ Switches debug output on if
flagis True otherwise it is switched off.Parameters: flag ( bool) – desired debug status
-
setDebugOff()¶ Switches debug output off.
-
setDebugOn()¶ Switches debug output on.
-
setHermitian(flag=False)¶ Sets the Hermitian flag to
flag.Parameters: flag ( bool) – If True, the Hermitian flag is set otherwise reset.Note: The method overwrites the Hermitian flag set by the solver options
-
setHermitianOff()¶ Clears the Hermitian flag. :note: The method overwrites the Hermitian flag set by the solver options
-
setHermitianOn()¶ Sets the Hermitian flag. :note: The method overwrites the Hermitian flag set by the solver options
-
setReducedOrderForEquationOff()¶ Switches reduced order off for equation representation.
Raises: RuntimeError – if order reduction is altered after a coefficient has been set
-
setReducedOrderForEquationOn()¶ Switches reduced order on for equation representation.
Raises: RuntimeError – if order reduction is altered after a coefficient has been set
-
setReducedOrderForEquationTo(flag=False)¶ Sets order reduction state for equation representation according to flag.
Parameters: flag ( bool) – if flag is True, the order reduction is switched on for equation representation, otherwise or if flag is not present order reduction is switched offRaises: RuntimeError – if order reduction is altered after a coefficient has been set
-
setReducedOrderForSolutionOff()¶ Switches reduced order off for solution representation
Raises: RuntimeError – if order reduction is altered after a coefficient has been set.
-
setReducedOrderForSolutionOn()¶ Switches reduced order on for solution representation.
Raises: RuntimeError – if order reduction is altered after a coefficient has been set
-
setReducedOrderForSolutionTo(flag=False)¶ Sets order reduction state for solution representation according to flag.
Parameters: flag ( bool) – if flag is True, the order reduction is switched on for solution representation, otherwise or if flag is not present order reduction is switched offRaises: RuntimeError – if order reduction is altered after a coefficient has been set
-
setReducedOrderOff()¶ Switches reduced order off for solution and equation representation
Raises: RuntimeError – if order reduction is altered after a coefficient has been set
-
setReducedOrderOn()¶ Switches reduced order on for solution and equation representation.
Raises: RuntimeError – if order reduction is altered after a coefficient has been set
-
setReducedOrderTo(flag=False)¶ Sets order reduction state for both solution and equation representation according to flag.
Parameters: flag ( bool) – if True, the order reduction is switched on for both solution and equation representation, otherwise or if flag is not present order reduction is switched offRaises: RuntimeError – if order reduction is altered after a coefficient has been set
-
setSolution(u, validate=True)¶ Sets the solution assuming that makes the system valid with the tolrance defined by the solver options
-
setSolverOptions(options=None)¶ Sets the solver options.
Parameters: options ( SolverOptionsorNone) – the new solver options. If equalNone, the solver options are set to the default.Note: The symmetry flag of options is overwritten by the symmetry flag of the LinearProblem.
-
setSymmetry(flag=False)¶ Sets the symmetry flag to
flag.Parameters: flag ( bool) – If True, the symmetry flag is set otherwise reset.Note: The method overwrites the symmetry flag set by the solver options
-
setSymmetryOff()¶ Clears the symmetry flag. :note: The method overwrites the symmetry flag set by the solver options
-
setSymmetryOn()¶ Sets the symmetry flag. :note: The method overwrites the symmetry flag set by the solver options
-
setSystemStatus(status=None)¶ Sets the system status to
statusifstatusis not present the current status of the domain is used.
-
setValue(**coefficients)¶ Sets new values to coefficients.
Parameters: - coefficients – new values assigned to coefficients
- A (any type that can be cast to a
Dataobject onFunction) – value for coefficientA - A_reduced (any type that can be cast to a
Dataobject onReducedFunction) – value for coefficientA_reduced - B (any type that can be cast to a
Dataobject onFunction) – value for coefficientB - B_reduced (any type that can be cast to a
Dataobject onReducedFunction) – value for coefficientB_reduced - C (any type that can be cast to a
Dataobject onFunction) – value for coefficientC - C_reduced (any type that can be cast to a
Dataobject onReducedFunction) – value for coefficientC_reduced - D (any type that can be cast to a
Dataobject onFunction) – value for coefficientD - D_reduced (any type that can be cast to a
Dataobject onReducedFunction) – value for coefficientD_reduced - X (any type that can be cast to a
Dataobject onFunction) – value for coefficientX - X_reduced (any type that can be cast to a
Dataobject onReducedFunction) – value for coefficientX_reduced - Y (any type that can be cast to a
Dataobject onFunction) – value for coefficientY - Y_reduced (any type that can be cast to a
Dataobject onReducedFunction) – value for coefficientY_reduced - d (any type that can be cast to a
Dataobject onFunctionOnBoundary) – value for coefficientd - d_reduced (any type that can be cast to a
Dataobject onReducedFunctionOnBoundary) – value for coefficientd_reduced - y (any type that can be cast to a
Dataobject onFunctionOnBoundary) – value for coefficienty - d_contact (any type that can be cast to a
Dataobject onFunctionOnContactOneorFunctionOnContactZero) – value for coefficientd_contact - d_contact_reduced (any type that can be cast to a
Dataobject onReducedFunctionOnContactOneorReducedFunctionOnContactZero) – value for coefficientd_contact_reduced - y_contact (any type that can be cast to a
Dataobject onFunctionOnContactOneorFunctionOnContactZero) – value for coefficienty_contact - y_contact_reduced (any type that can be cast to a
Dataobject onReducedFunctionOnContactOneorReducedFunctionOnContactZero) – value for coefficienty_contact_reduced - d_dirac (any type that can be cast to a
Dataobject onDiracDeltaFunctions) – value for coefficientd_dirac - y_dirac (any type that can be cast to a
Dataobject onDiracDeltaFunctions) – value for coefficienty_dirac - r (any type that can be cast to a
Dataobject onSolutionorReducedSolutiondepending on whether reduced order is used for the solution) – values prescribed to the solution at the locations of constraints - q (any type that can be cast to a
Dataobject onSolutionorReducedSolutiondepending on whether reduced order is used for the representation of the equation) – mask for location of constraints
Raises: IllegalCoefficient – if an unknown coefficient keyword is used
-
shouldPreservePreconditioner()¶ Returns true if the preconditioner / factorisation should be kept even when resetting the operator.
Return type: bool
-
trace(text)¶ Prints the text message if debug mode is switched on.
Parameters: text ( string) – message to be printed
-
validOperator()¶ Marks the operator as valid.
-
validRightHandSide()¶ Marks the right hand side as valid.
-
validSolution()¶ Marks the solution as valid.
-
class
esys.downunder.Locator(where, x=array([0., 0., 0.]))¶ Bases:
objectLocator provides access to the values of data objects at a given spatial coordinate x.
In fact, a Locator object finds the sample in the set of samples of a given function space or domain which is closest to the given point x.
-
__init__(where, x=array([0., 0., 0.]))¶ Initializes a Locator to access values in Data objects on the Doamin or FunctionSpace for the sample point which is closest to the given point x.
Parameters: - where (
escript.FunctionSpace) – function space - x (
numpy.ndarrayorlistofnumpy.ndarray) – location(s) of the Locator
- where (
-
getFunctionSpace()¶ Returns the function space of the Locator.
-
getId(item=None)¶ Returns the identifier of the location.
-
getValue(data)¶ Returns the value of
dataat the Locator ifdatais aDataobject otherwise the object is returned.
-
getX()¶ Returns the exact coordinates of the Locator.
-
setValue(data, v)¶ Sets the value of the
dataat the Locator.
-
-
class
esys.downunder.MT2DModelTEMode(domain, omega, x, Z_XY, eta=None, w0=1.0, mu=1.2566370614359173e-06, sigma0=0.01, airLayerLevel=None, coordinates=None, Ex_top=1, fixAtTop=False, tol=1e-08, saveMemory=False, directSolver=True)¶ Bases:
esys.downunder.forwardmodels.magnetotelluric2d.MT2DBaseForward Model for two dimensional MT model in the TE mode for a given frequency omega. It defines a cost function:
- defect = 1/2 integrate( sum_s w^s * ( E_x/H_y - Z_XY^s ) ) ** 2 *
where E_x is the horizontal electric field perpendicular to the YZ-domain, horizontal magnetic field H_y=1/(i*omega*mu) * E_{x,z} with complex unit i and permeability mu. The weighting factor w^s is set to
- w^s(X) = w_0^s *
if length(X-X^s) <= eta and zero otherwise. X^s is the location of impedance measurement Z_XY^s, w_0^s is the level of confidence (eg. 1/measurement error) and eta is level of spatial confidence.
E_x is given as solution of the PDE
- -E_{x,ii} - i omega * mu * sigma * E_x = 0
where E_x at top and bottom is set to solution for background field. Homogeneous Neuman conditions are assumed elsewhere.
-
__init__(domain, omega, x, Z_XY, eta=None, w0=1.0, mu=1.2566370614359173e-06, sigma0=0.01, airLayerLevel=None, coordinates=None, Ex_top=1, fixAtTop=False, tol=1e-08, saveMemory=False, directSolver=True)¶ initializes a new forward model. See base class for a description of the arguments.
-
getArguments(sigma)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: sigma ( Dataof shape (2,)) – conductivityReturns: E_x, E_z Return type: Dataof shape (2,)
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getDefect(sigma, Ex, dExdz)¶ Returns the defect value.
Parameters: - sigma (
Dataof shape ()) – a suggestion for conductivity - Ex (
Dataof shape (2,)) – electric field - dExdz (
Dataof shape (2,)) – vertical derivative of electric field
Return type: float- sigma (
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(sigma, Ex, dExdz)¶ Returns the gradient of the defect with respect to density.
Parameters: - sigma (
Dataof shape ()) – a suggestion for conductivity - Ex (
Dataof shape (2,)) – electric field - dExdz (
Dataof shape (2,)) – vertical derivative of electric field
- sigma (
-
getWeightingFactor(x, wx0, x0, eta)¶ returns the weighting factor
-
class
esys.downunder.MT2DModelTMMode(domain, omega, x, Z_YX, eta=None, w0=1.0, mu=1.2566370614359173e-06, sigma0=0.01, airLayerLevel=None, coordinates=None, tol=1e-08, saveMemory=False, directSolver=True)¶ Bases:
esys.downunder.forwardmodels.magnetotelluric2d.MT2DBaseForward Model for two-dimensional MT model in the TM mode for a given frequency omega. It defines a cost function:
- defect = 1/2 integrate( sum_s w^s * ( rho*H_x/Hy - Z_YX^s ) ) ** 2 *
where H_x is the horizontal magnetic field perpendicular to the YZ-domain, horizontal magnetic field H_y=1/(i*omega*mu) * E_{x,z} with complex unit i and permeability mu. The weighting factor w^s is set to
- w^s(X) = w_0^s *
if length(X-X^s) <= eta and zero otherwise. X^s is the location of impedance measurement Z_XY^s, w_0^s is the level of confidence (eg. 1/measurement error) and eta is level of spatial confidence.
H_x is given as solution of the PDE
- -(rho*H_{x,i})_{,i} + i omega * mu * H_x = 0
where H_x at top and bottom is set to solution for background field. Homogeneous Neuman conditions are assumed elsewhere.
-
__init__(domain, omega, x, Z_YX, eta=None, w0=1.0, mu=1.2566370614359173e-06, sigma0=0.01, airLayerLevel=None, coordinates=None, tol=1e-08, saveMemory=False, directSolver=True)¶ initializes a new forward model. See base class for a description of the arguments.
-
getArguments(rho)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: rho ( Dataof shape (2,)) – resistivityReturns: Hx, grad(Hx) Return type: tupleofData
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getDefect(rho, Hx, g_Hx)¶ Returns the defect value.
Parameters: - rho (
Dataof shape ()) – a suggestion for resistivity - Hx (
Dataof shape (2,)) – magnetic field - g_Hx (
Dataof shape (2,2)) – gradient of magnetic field
Return type: float- rho (
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(rho, Hx, g_Hx)¶ Returns the gradient of the defect with respect to resistivity.
Parameters: - rho (
Dataof shape ()) – a suggestion for resistivity - Hx (
Dataof shape (2,)) – magnetic field - g_Hx (
Dataof shape (2,2)) – gradient of magnetic field
- rho (
-
getWeightingFactor(x, wx0, x0, eta)¶ returns the weighting factor
-
class
esys.downunder.MTMapping(sigma_prior, a=1.0)¶ Bases:
esys.downunder.mappings.Mappingmt mapping
sigma=sigma0*exp(a*m)
-
__init__(sigma_prior, a=1.0)¶ initializes the mapping
Parameters: sigma_prior – a a-priori conductivity
-
getDerivative(m)¶ returns the derivative of the mapping for m
-
getInverse(s)¶ returns the value of the inverse of the mapping for s
-
getTypicalDerivative()¶ returns a typical value for the derivative
-
getValue(m)¶ returns the value of the mapping for m
-
-
class
esys.downunder.MagneticIntensityModel(domain, w, b, background_magnetic_flux_density, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Bases:
esys.downunder.forwardmodels.base.ForwardModelWithPotentialForward Model for magnetic intensity inversion as described in the inversion cookbook.
-
__init__(domain, w, b, background_magnetic_flux_density, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Creates a new magnetic intensity model on the given domain with one or more surveys (w, b).
Parameters: - domain (
Domain) – domain of the model - w (
Scalaror list ofScalar) – data weighting factors - b (
Scalaror list ofScalar) – magnetic intensity field data - tol (positive
float) – tolerance of underlying PDE - background_magnetic_flux_density (
Vectoror list offloat) – background magnetic flux density (in Tesla) with components (B_east, B_north, B_vertical) - coordinates (None) – defines coordinate system to be used
- fixPotentialAtBottom (
bool) – if true potential is fixed to zero at the bottom of the domain in addition to the top
- domain (
-
getArguments(k)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: k ( Scalar) – susceptibilityReturns: scalar magnetic potential and corresponding magnetic field Return type: Scalar,Vector
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getData()¶ Returns the data
Return type: listofData
-
getDataFunctionSpace()¶ Returns the
FunctionSpaceof the dataReturn type: FunctionSpace
-
getDefect(k, phi, magnetic_flux_density)¶ Returns the value of the defect.
Parameters: - k (
Scalar) – susceptibility - phi (
Scalar) – corresponding potential - magnetic_flux_density (
Vector) – magnetic field
Return type: float- k (
-
getDefectGradient(result)¶
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(k, phi, magnetic_flux_density)¶ Returns the gradient of the defect with respect to susceptibility.
Parameters: - k (
Scalar) – susceptibility - phi (
Scalar) – corresponding potential - magnetic_flux_density (
Vector) – magnetic field
Return type: Scalar- k (
-
getMisfitWeights()¶ Returns the weights of the misfit function
Return type: listofData
-
getPotential(k)¶ Calculates the magnetic potential for a given susceptibility.
Parameters: k ( Scalar) – susceptibilityReturns: magnetic potential Return type: Scalar
-
getSurvey(index=None)¶ Returns the pair (data_index, weight_index), where data_i is the data of survey i, weight_i is the weighting factor for survey i. If index is None, all surveys will be returned in a pair of lists.
-
rescaleWeights(scale=1.0, k_scale=1.0)¶ rescales the weights such that
sum_s integrate( ( w_i[s] *B_i[s]) (w_j[s]*1/L_j) * L**2 * (background_magnetic_flux_density_j[s]*1/L_j) * k_scale )=scale
Parameters: - scale (positive
float) – scale of data weighting factors - k_scale (
Scalar) – scale of susceptibility.
- scale (positive
-
-
class
esys.downunder.MagneticInversion(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ Bases:
esys.downunder.inversions.InversionDriverDriver class to perform an inversion of magnetic anomaly data. The class uses the standard
Regularizationclass for a single level set function,SusceptibilityMappingmapping and the linear magnetic forward modelMagneticModel.-
__init__(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ creates an instance of an inversion driver.
Parameters: - solverclass ('AbstractMinimizer'.) – class of the solver to be used.
- self_demagnetization – if True self-demagnitization is applied.
- magnetic_intensity_data – if True magnetic intensity is used in the cost function.
-
fixGravityPotentialAtBottom(status=False)¶ indicates to fix the gravity potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True gravity potential at the bottom is set to zero
-
fixMagneticPotentialAtBottom(status=True)¶ indicates to fix the magnetic potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True magnetic potential at the bottom is set to zero
-
getCostFunction()¶ returns the cost function of the inversion.
Return type: ‘InversionCostFunction’
-
getDomain()¶ returns the domain of the inversion
Return type: Domain
-
getLevelSetFunction()¶ returns the level set function as solution of the optimization problem
Return type: Data
-
getSolver()¶ The solver to be used in the inversion process. See the minimizers module for available solvers. By default, the L-BFGS minimizer is used.
Return type: ‘AbstractMinimizer’.
-
isSetUp()¶ returns True if the inversion is set up and is ready to run.
Return type: bool
-
run()¶ Executes the inversion.
Returns: physical parameters as result of the inversion Return type: listof physical parameters or a physical parameter
-
setCostFunction(costfunction)¶ sets the cost function of the inversion. This function needs to be called before the inversion iteration can be started.
Parameters: costfunction ('InversionCostFunction') – domain of the inversion
-
setInitialGuess(k=None)¶ set the initial guess k for susceptibility for the inversion iteration. If no k present then an appropriate initial guess is chosen.
Parameters: k ( Scalar) – initial value for the susceptibility anomaly.
-
setSolverCallback(callback=None)¶ Sets the callback function which is called after every solver iteration.
-
setSolverMaxIterations(maxiter=None)¶ Sets the maximum number of solver iterations to run. If
maxiteris reached the iteration is terminated andMinimizerMaxIterReachedis thrown.Parameters: maxiter (positive int) – maximum number of iteration steps.
-
setSolverTolerance(m_tol=None, J_tol=None)¶ Sets the error tolerance for the solver. An acceptable solution is considered to be found once the tolerance is reached.
Parameters: - m_tol (
floatorNone) – tolerance for changes to level set function. IfNonechanges to the level set function are not checked for convergence during iteration. - J_tol (
floatorNone) – tolerance for changes to cost function. IfNonechanges to the cost function are not checked for convergence during iteration.
Note: if both arguments are
Nonethe default setting m_tol=1e-4, J_tol=None is used.- m_tol (
-
setup(domainbuilder, k0=None, dk=None, z0=None, beta=None, w0=None, w1=None, k_at_depth=None)¶ Sets up the inversion from a
DomainBuilder. If magnetic data are given as scalar it is assumed that values are collected in direction of the background magnetic field.Parameters: - domainbuilder (
DomainBuilder) – Domain builder object with gravity source(s) - k0 (
floatorScalar) – reference susceptibility, seeSusceptibilityMapping. If not specified, zero is used. - dk (
floatorScalar) – susceptibility scale, seeSusceptibilityMapping. If not specified, 1. is used. - z0 (
floatorScalar) – reference depth for depth weighting, seeSusceptibilityMapping. If not specified, zero is used. - beta (
floatorScalar) – exponent for depth weighting, seeSusceptibilityMapping. If not specified, zero is used. - w0 (
Scalarorfloat) – weighting factor for level set term regularization. If not set zero is assumed. - w1 (
Vectoror list offloat) – weighting factor for the gradient term in the regularization. If not set zero is assumed - k_at_depth (
floatorNone) – value for susceptibility at depth, seeDomainBuilder.
- domainbuilder (
-
siloWriterCallback(k, x, Jx, g_Jx, norm_dJ=None, norm_dx=None)¶ callback function that can be used to track the solution
Parameters: - k – iteration count
- x – current approximation
- Jx – value of cost function
- g_Jx – gradient of f at x
-
-
class
esys.downunder.MagneticModel(domain, w, B, background_magnetic_flux_density, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Bases:
esys.downunder.forwardmodels.base.ForwardModelWithPotentialForward Model for magnetic inversion as described in the inversion cookbook.
-
__init__(domain, w, B, background_magnetic_flux_density, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Creates a new magnetic model on the given domain with one or more surveys (w, B).
Parameters: - domain (
Domain) – domain of the model - w (
Vectoror list ofVector) – data weighting factors - B (
Vectoror list ofVector) – magnetic field data - tol (positive
float) – tolerance of underlying PDE - background_magnetic_flux_density (
Vectoror list offloat) – background magnetic flux density (in Tesla) with components (B_east, B_north, B_vertical) - coordinates (
ReferenceSystemorSpatialCoordinateTransformation) – defines coordinate system to be used - fixPotentialAtBottom (
bool) – if true potential is fixed to zero at the bottom of the domain in addition to the top
- domain (
-
getArguments(k)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: k ( Scalar) – susceptibilityReturns: scalar magnetic potential and corresponding magnetic field Return type: Scalar,Vector
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getData()¶ Returns the data
Return type: listofData
-
getDataFunctionSpace()¶ Returns the
FunctionSpaceof the dataReturn type: FunctionSpace
-
getDefect(k, phi, magnetic_flux_density)¶ Returns the value of the defect.
Parameters: - k (
Scalar) – susceptibility - phi (
Scalar) – corresponding potential - magnetic_flux_density (
Vector) – magnetic field
Return type: float- k (
-
getDefectGradient(result)¶
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(k, phi, magnetic_flux_density)¶ Returns the gradient of the defect with respect to susceptibility.
Parameters: - k (
Scalar) – susceptibility - phi (
Scalar) – corresponding potential - magnetic_flux_density (
Vector) – magnetic field
Return type: Scalar- k (
-
getMisfitWeights()¶ Returns the weights of the misfit function
Return type: listofData
-
getPotential(k)¶ Calculates the magnetic potential for a given susceptibility.
Parameters: k ( Scalar) – susceptibilityReturns: magnetic potential Return type: Scalar
-
getSurvey(index=None)¶ Returns the pair (data_index, weight_index), where data_i is the data of survey i, weight_i is the weighting factor for survey i. If index is None, all surveys will be returned in a pair of lists.
-
rescaleWeights(scale=1.0, k_scale=1.0)¶ rescales the weights such that
sum_s integrate( ( w_i[s] *B_i[s]) (w_j[s]*1/L_j) * L**2 * (background_magnetic_flux_density_j[s]*1/L_j) * k_scale )=scale
Parameters: - scale (positive
float) – scale of data weighting factors - k_scale (
Scalar) – scale of susceptibility.
- scale (positive
-
-
class
esys.downunder.Mapping(*args)¶ Bases:
objectAn abstract mapping class to map level set functions m to physical parameters p.
-
__init__(*args)¶ Initialize self. See help(type(self)) for accurate signature.
-
getDerivative(m)¶ returns the value for the derivative of the mapping for m
-
getInverse(s)¶ returns the value of the inverse of the mapping for physical parameter p
-
getTypicalDerivative()¶ returns a typical value for the derivative
-
getValue(m)¶ returns the value of the mapping for m
-
-
class
esys.downunder.MeteredCostFunction¶ Bases:
esys.downunder.costfunctions.CostFunctionThis an intrumented version of the
CostFunctionclass. The function calls update statistical information. The actual work is done by the methods with corresponding name and a leading underscore. These functions need to be overwritten for a particular cost function implementation.-
__init__()¶ the base constructor initializes the counters so subclasses should ensure the super class constructor is called.
-
getArguments(x)¶ returns precalculated values that are shared in the calculation of f(x) and grad f(x) and the Hessian operator
Note
The tuple returned by this call will be passed back to this
CostFunctionin other calls(eg:getGradient). Its contents are not specified at this level because no code, other than theCostFunctionwhich created it, will be interacting with it. That is, the implementor can put whatever information they find useful in it.Parameters: x (x-type) – location of derivative Return type: tuple
-
getDualProduct(x, r)¶ returns the dual product of
xandrReturn type: float
-
getGradient(x, *args)¶ returns the gradient of f at x using the precalculated values for x.
Parameters: - x (x-type) – location of derivative
- args – pre-calculated values for
xfromgetArguments()
Return type: r-type
-
getInverseHessianApproximation(x, r, *args)¶ returns an approximative evaluation p of the inverse of the Hessian operator of the cost function for a given gradient r at a given location x: H(x) p = r
Note
In general it is assumed that the Hessian H(x) needs to be calculate in each call for a new location x. However, the solver may suggest that this is not required, typically when the iteration is close to completeness.
Parameters: - x (x-type) – location of Hessian operator to be evaluated.
- r (r-type) – a given gradient
- args – pre-calculated values for
xfromgetArguments()
Return type: x-type
-
getNorm(x)¶ returns the norm of
xReturn type: float
-
getValue(x, *args)¶ returns the value f(x) using the precalculated values for x.
Parameters: x (x-type) – a solution approximation Return type: float
-
provides_inverse_Hessian_approximation= False¶
-
resetCounters()¶ resets all statistical counters
-
updateHessian()¶ notifies the class that the Hessian operator needs to be updated. This method is called by the solver class.
-
-
class
esys.downunder.MinimizerException¶ Bases:
ExceptionThis is a generic exception thrown by a minimizer.
-
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
-
args¶
-
with_traceback()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
-
-
class
esys.downunder.MinimizerIterationIncurableBreakDown¶ Bases:
esys.downunder.minimizers.MinimizerExceptionException thrown if the iteration scheme encountered an incurable breakdown.
-
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
-
args¶
-
with_traceback()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
-
-
class
esys.downunder.MinimizerLBFGS(J=None, m_tol=0.0001, J_tol=None, imax=300)¶ Bases:
esys.downunder.minimizers.AbstractMinimizerMinimizer that uses the limited-memory Broyden-Fletcher-Goldfarb-Shanno method. See Chapter 6 of ‘Numerical Optimization’ by J. Nocedal for an explanation.
-
__init__(J=None, m_tol=0.0001, J_tol=None, imax=300)¶ Initializes a new minimizer for a given cost function.
Parameters: - J (
CostFunction) – the cost function to be minimized - m_tol (float) – terminate interations when relative change of the level set function is less than or equal m_tol
- J (
-
getCostFunction()¶ return the cost function to be minimized
Return type: CostFunction
-
getOptions()¶ returns a dictionary of LBFGS options rtype: dictionary with keys ‘truncation’, ‘initialHessian’, ‘restart’, ‘max_linesearch_steps’, ‘max_zoom_steps’ ‘interpolationOrder’, ‘tol_df’, ‘tol_sm’
-
getResult()¶ Returns the result of the minimization.
-
logSummary()¶ Outputs a summary of the completed minimization process to the logger.
-
run(x)¶ - The callback function is called with the following arguments:
- k - iteration number x - current estimate Jx - value of cost function at x g_Jx - gradient of cost function at x norm_dJ - ||Jx_k - Jx_{k-1}|| (only if J_tol is set) norm_dx - ||x_k - x_{k-1}|| (only if m_tol is set)
Parameters: x ( Data) – Level set function representing our initial guessReturns: Level set function representing the solution Return type: Data
-
setCallback(callback)¶ Sets a callback function to be called after every iteration. It is up to the specific implementation what arguments are passed to the callback. Subclasses should at least pass the current iteration number k, the current estimate x, and possibly f(x), grad f(x), and the current error.
-
setCostFunction(J)¶ set the cost function to be minimized
Parameters: J ( CostFunction) – the cost function to be minimized
-
setMaxIterations(imax)¶ Sets the maximum number of iterations before the minimizer terminates.
-
setOptions(**opts)¶ setOptions for LBFGS. use solver.setOptions( key = value) :key truncation: sets the number of previous LBFGS iterations to keep :type truncation : int :default truncation: 30 :key initialHessian: 1 if initial Hessian is given :type initialHessian: 1 or 0 :default initialHessian: 1 :key restart: restart after this many iteration steps :type restart: int :default restart: 60 :key max_linesearch_steps: maximum number of line search iterations :type max_linesearch_steps: int :default max_linesearch_steps: 25 :key max_zoom_steps: maximum number of zoom iterations :type max_zoom_steps: int :default max_zoom_steps: 60 :key interpolationOrder: order of the interpolation used for line search :type interpolationOrder: 1,2,3 or 4 :default interpolationOrder: 1 :key tol_df: interpolated value of alpha, alpha_i, must differ
: from the previous value by at least this much : abs(alpha_i-alpha_{i-1}) < tol_df (line search)Default tol_df: 1e-6
Key tol_sm: interpolated value of alpha must not be less than tol_sm : abs(alpha_i) < tol_sm*abs(alpha_{i-1})
Default tol_sm: 1e-5
- Example of usage::
cf=DerivedCostFunction() solver=MinimizerLBFGS(J=cf, m_tol = 1e-5, J_tol = 1e-5, imax=300) solver.setOptions(truncation=20, tol_df =1e-7) solver.run(initial_m) result=solver.getResult()
-
setTolerance(m_tol=0.0001, J_tol=None)¶ Sets the tolerance for the stopping criterion. The minimizer stops when an appropriate norm is less than
m_tol.
-
-
class
esys.downunder.MinimizerMaxIterReached¶ Bases:
esys.downunder.minimizers.MinimizerExceptionException thrown if the maximum number of iteration steps is reached.
-
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
-
args¶
-
with_traceback()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
-
-
class
esys.downunder.MinimizerNLCG(J=None, m_tol=0.0001, J_tol=None, imax=300)¶ Bases:
esys.downunder.minimizers.AbstractMinimizerMinimizer that uses the nonlinear conjugate gradient method (Fletcher-Reeves variant).
-
__init__(J=None, m_tol=0.0001, J_tol=None, imax=300)¶ Initializes a new minimizer for a given cost function.
Parameters: - J (
CostFunction) – the cost function to be minimized - m_tol (float) – terminate interations when relative change of the level set function is less than or equal m_tol
- J (
-
getCostFunction()¶ return the cost function to be minimized
Return type: CostFunction
-
getOptions()¶ Returns a dictionary of minimizer-specific options.
-
getResult()¶ Returns the result of the minimization.
-
logSummary()¶ Outputs a summary of the completed minimization process to the logger.
-
run(x)¶ - The callback function is called with the following arguments:
- k - iteration number x - current estimate Jx - value of cost function at x g_Jx - gradient of cost function at x gnorm - norm of g_Jx (stopping criterion)
-
setCallback(callback)¶ Sets a callback function to be called after every iteration. It is up to the specific implementation what arguments are passed to the callback. Subclasses should at least pass the current iteration number k, the current estimate x, and possibly f(x), grad f(x), and the current error.
-
setCostFunction(J)¶ set the cost function to be minimized
Parameters: J ( CostFunction) – the cost function to be minimized
-
setMaxIterations(imax)¶ Sets the maximum number of iterations before the minimizer terminates.
-
setOptions(**opts)¶ Sets minimizer-specific options. For a list of possible options see
getOptions().
-
setTolerance(m_tol=0.0001, J_tol=None)¶ Sets the tolerance for the stopping criterion. The minimizer stops when an appropriate norm is less than
m_tol.
-
-
class
esys.downunder.NetCdfData(data_type, filename, altitude=0.0, data_variable=None, error=None, scale_factor=None, null_value=None, reference_system=None)¶ Bases:
esys.downunder.datasources.DataSourceData Source for gridded netCDF data that use CF/COARDS conventions.
-
__init__(data_type, filename, altitude=0.0, data_variable=None, error=None, scale_factor=None, null_value=None, reference_system=None)¶ Parameters: - filename (
str) – file name for survey data in netCDF format - data_type (
int) – type of data, must beGRAVITYorMAGNETIC - altitude (
float) – altitude of measurements in meters - data_variable (
str) – name of the netCDF variable that holds the data. If not provided an attempt is made to determine the variable and an exception thrown on failure. - error (
strorfloat) – either the name of the netCDF variable that holds the uncertainties of the measurements or a constant value to use for the uncertainties. If a constant value is supplied, it is scaled by the same factor as the measurements. If not provided the error is assumed to be 2 units for all measurements (i.e. 0.2 mGal and 2 nT for gravity and magnetic, respectively) - scale_factor (
float) – the measurements and error values are scaled by this factor. By default, gravity data is assumed to be given in 1e-6 m/s^2 (0.1 mGal), while magnetic data is assumed to be in 1e-9 T (1 nT). - null_value (
float) – value that is used in the file to mark undefined areas. This information is usually included in the file. - reference_system (
ReferenceSystem) – reference coordinate system to be used. For a Cartesian reference (default) the appropriate UTM transformation is applied.
Note: it is the responsibility of the caller to ensure all data sources and the domain builder use the same reference system.
- filename (
-
ACOUSTIC= 2¶
-
GRAVITY= 0¶
-
MAGNETIC= 1¶
-
MT= 3¶
-
getDataExtents()¶ returns ( (x0, y0), (nx, ny), (dx, dy) )
-
getDataType()¶ Returns the type of survey data managed by this source. Subclasses must return
GRAVITYorMAGNETICorACOUSTICas appropriate.
-
getHeightScale()¶ returns the height scale factor to convert from meters to the appropriate units of the reference system used.
Return type: float
-
getReferenceSystem()¶ returns the reference coordinate system
Return type: ReferenceSystem
-
getScaleFactor()¶ returns the data scale factor for adjusting measurement to SI
-
getSubsamplingFactor()¶ Returns the subsampling factor that was set via
setSubsamplingFactor(see there).
-
getSurveyData(domain, origin, NE, spacing)¶ This method is called by the
DomainBuilderto retrieve the survey data asDataobjects on the given domain.Subclasses should return one or more
Dataobjects with survey data interpolated on the givenescriptdomain. The exact return type depends on the type of data.Parameters: - domain (
esys.escript.Domain) – the escript domain to use - origin (
tupleorlist) – the origin coordinates of the domain - NE (
tupleorlist) – the number of domain elements in each dimension - spacing (
tupleorlist) – the cell sizes (node spacing) in the domain
- domain (
-
getTags()¶ returns the list of tags
Return type: list
-
getUtmZone()¶ All data source coordinates are converted to UTM (Universal Transverse Mercator) in order to have useful domain extents. Subclasses should implement this method and return the UTM zone number of the projected coordinates.
-
hasTag(tag)¶ returns true if the data set has tag
tagReturn type: bool
-
setSubsamplingFactor(f)¶ Sets the data subsampling factor (default=1).
The factor is applied in all dimensions. For example a 2D dataset with 300 x 150 data points will be reduced to 150 x 75 when a subsampling factor of 2 is used. This becomes important when adding data of varying resolution to a
DomainBuilder.
-
-
class
esys.downunder.NumpyData(data_type, data, error=1.0, length=1000.0, null_value=-1.0, tags=[], origin=None)¶ Bases:
esys.downunder.datasources.DataSource-
__init__(data_type, data, error=1.0, length=1000.0, null_value=-1.0, tags=[], origin=None)¶ A data source that uses survey data from a
numpyobject or list instead of a file. The dimensionality is inferred from the shape ofdata(1- and 2-dimensional data is supported). The data origin is assumed to be at the coordinate origin.Parameters: - data_type (
DataSource.GRAVITY,DataSource.MAGNETIC) – data type indicator - data (
numpy.arrayorlist) – the survey data array. Note that for a cartesian coordinate system the shape of the data is considered to be (nz,ny,nx). - error (
floatorlistorndarray) – constant value to use for the data uncertainties or a numpy object with uncertainties for every data point. - length (
floatorlistorndarray) – side length(s) of the data slice/volume. This can be a scalar to indicate constant length in all dimensions or an array/list of values in each coordinate dimension. - null_value (
float) – value that is used in the undefined regions of the survey data object. - tags (
listof almost any type (typicallystr)) – a list of tags associated with the data set. - origin (
listoffloat) – offset of origin of offset
- data_type (
-
ACOUSTIC= 2¶
-
GRAVITY= 0¶
-
MAGNETIC= 1¶
-
MT= 3¶
-
getDataExtents()¶ returns a tuple of tuples
( (x0, y0), (nx, ny), (dx, dy) ), wherex0,y0= coordinates of data originnx,ny= number of data points in x and ydx,dy= spacing of data points in x and y
This method must be implemented in subclasses.
-
getDataType()¶ Returns the type of survey data managed by this source. Subclasses must return
GRAVITYorMAGNETICorACOUSTICas appropriate.
-
getHeightScale()¶ returns the height scale factor to convert from meters to the appropriate units of the reference system used.
Return type: float
-
getReferenceSystem()¶ returns the reference coordinate system
Return type: ReferenceSystem
-
getSubsamplingFactor()¶ Returns the subsampling factor that was set via
setSubsamplingFactor(see there).
-
getSurveyData(domain, origin, NE, spacing)¶ This method is called by the
DomainBuilderto retrieve the survey data asDataobjects on the given domain.Subclasses should return one or more
Dataobjects with survey data interpolated on the givenescriptdomain. The exact return type depends on the type of data.Parameters: - domain (
esys.escript.Domain) – the escript domain to use - origin (
tupleorlist) – the origin coordinates of the domain - NE (
tupleorlist) – the number of domain elements in each dimension - spacing (
tupleorlist) – the cell sizes (node spacing) in the domain
- domain (
-
getTags()¶ returns the list of tags
Return type: list
-
getUtmZone()¶ returns a dummy UTM zone since this class does not use real coordinate values.
-
hasTag(tag)¶ returns true if the data set has tag
tagReturn type: bool
-
setSubsamplingFactor(f)¶ Sets the data subsampling factor (default=1).
The factor is applied in all dimensions. For example a 2D dataset with 300 x 150 data points will be reduced to 150 x 75 when a subsampling factor of 2 is used. This becomes important when adding data of varying resolution to a
DomainBuilder.
-
-
class
esys.downunder.PoleDipoleSurvey(domain, primaryConductivity, secondaryConductivity, current, a, n, midPoint, directionVector, numElectrodes)¶ Bases:
esys.downunder.dcresistivityforwardmodeling.DcResistivityForwardForward model class for a poledipole setup
-
__init__(domain, primaryConductivity, secondaryConductivity, current, a, n, midPoint, directionVector, numElectrodes)¶ Parameters: - domain (
Domain) – domain of the model - primaryConductivity (data) – preset primary conductivity data object
- secondaryConductivity (data) – preset secondary conductivity data object
- current (float or int) – amount of current to be injected at the current electrode
- a (list) – the spacing between current and potential electrodes
- n (float or int) – multiple of spacing between electrodes. typicaly interger
- midPoint – midPoint of the survey, as a list containing x,y coords
- directionVector – two element list specifying the direction the survey should extend from the midpoint
- numElectrodes (int) – the number of electrodes to be used in the survey must be a multiple of 2 for polepole survey:
- domain (
-
checkBounds()¶
-
getApparentResistivity()¶
-
getApparentResistivityPrimary()¶
-
getApparentResistivitySecondary()¶
-
getApparentResistivityTotal()¶
-
getElectrodes()¶ retuns the list of electrodes with locations
-
getPotential()¶ Returns 3 list each made up of a number of list containing primary, secondary and total potentials diferences. Each of the lists contain a list for each value of n.
-
-
class
esys.downunder.PolePoleSurvey(domain, primaryConductivity, secondaryConductivity, current, a, midPoint, directionVector, numElectrodes)¶ Bases:
esys.downunder.dcresistivityforwardmodeling.DcResistivityForwardForward model class for a polepole setup
-
__init__(domain, primaryConductivity, secondaryConductivity, current, a, midPoint, directionVector, numElectrodes)¶ Parameters: - domain (
Domain) – domain of the model - primaryConductivity (data) – preset primary conductivity data object
- secondaryConductivity (data) – preset secondary conductivity data object
- current (float or int) – amount of current to be injected at the current electrode
- a (list) – the spacing between current and potential electrodes
- midPoint – midPoint of the survey, as a list containing x,y coords
- directionVector – two element list specifying the direction the survey should extend from the midpoint
- numElectrodes (int) – the number of electrodes to be used in the survey must be a multiple of 2 for polepole survey:
- domain (
-
checkBounds()¶
-
getApparentResistivity()¶
-
getApparentResistivityPrimary()¶
-
getApparentResistivitySecondary()¶
-
getApparentResistivityTotal()¶
-
getElectrodes()¶ retuns the list of electrodes with locations
-
getPotential()¶ returns a list containing 3 lists one for each the primary, secondary and total potential.
-
-
class
esys.downunder.ReferenceSystem(name='none')¶ Bases:
objectGeneric identifier for coordinate systems.
-
__init__(name='none')¶ initialization of reference system
Parameters: name ( str) – name of the reference system
-
createTransformation(domain)¶ creates an appropriate coordinate transformation on a given domain
Note
needs to be overwritten by a particular reference system
Parameters: domain ( esys.escript.AbstractDomain) – domain of transformationReturn type: SpatialCoordinateTransformation
-
getName()¶ returns the name of the reference system
-
isCartesian()¶ returns if the reference system is Cartesian
Note
needs to be overwritten by a particular reference system
Return type: bool
-
isTheSame(other)¶ test if argument
otherdefines the same reference systemParameters: other ( ReferenceSystem) – a second reference systemReturns: Trueif other defines the same reference systemReturn type: boolNote
needs to be overwritten by a particular reference system
-
-
class
esys.downunder.Regularization(domain, numLevelSets=1, w0=None, w1=None, wc=None, location_of_set_m=<esys.escriptcore.escriptcpp.Data object>, useDiagonalHessianApproximation=False, tol=1e-08, coordinates=None, scale=None, scale_c=None)¶ Bases:
esys.downunder.costfunctions.CostFunctionThe regularization term for the level set function
mwithin the cost function J for an inversion:J(m)=1/2 * sum_k integrate( mu[k] * ( w0[k] * m_k**2 * w1[k,i] * m_{k,i}**2) + sum_l<k mu_c[l,k] wc[l,k] * | curl(m_k) x curl(m_l) |^2
where w0[k], w1[k,i] and wc[k,l] are non-negative weighting factors and mu[k] and mu_c[l,k] are trade-off factors which may be altered during the inversion. The weighting factors are normalized such that their integrals over the domain are constant:
integrate(w0[k] + inner(w1[k,:],1/L[:]**2))=scale[k] volume(domain)* integrate(wc[l,k]*1/L**4)=scale_c[k] volume(domain) *
-
__init__(domain, numLevelSets=1, w0=None, w1=None, wc=None, location_of_set_m=<esys.escriptcore.escriptcpp.Data object>, useDiagonalHessianApproximation=False, tol=1e-08, coordinates=None, scale=None, scale_c=None)¶ initialization.
Parameters: - domain (
Domain) – domain - numLevelSets (
int) – number of level sets - w0 (
ScalarifnumLevelSets== 1 orDataobject of shape (numLevelSets,) ifnumLevelSets> 1) – weighting factor for the m**2 term. If not set zero is assumed. - w1 (
VectorifnumLevelSets== 1 orDataobject of shape (numLevelSets, DIM) ifnumLevelSets> 1) – weighting factor for the grad(m_i) terms. If not set zero is assumed - wc (
Dataobject of shape (numLevelSets,numLevelSets)) – weighting factor for the cross gradient terms. If not set zero is assumed. Used for the case ifnumLevelSets> 1 only. Only valueswc[l,k]in the lower triangle (l<k) are used. - location_of_set_m (
ScalarifnumLevelSets== 1 orDataobject of shape (numLevelSets,) ifnumLevelSets> 1) – marks location of zero values of the level set functionmby a positive entry. - useDiagonalHessianApproximation (
bool) – if True cross gradient terms between level set components are ignored when calculating approximations of the inverse of the Hessian Operator. This can speed-up the calculation of the inverse but may lead to an increase of the number of iteration steps in the inversion. - tol (positive
float) – tolerance when solving the PDE for the inverse of the Hessian Operator - coordinates (ReferenceSystem` or
SpatialCoordinateTransformation) – defines coordinate system to be used - scale (
ScalarifnumLevelSets== 1 orDataobject of shape (numLevelSets,) ifnumLevelSets> 1) – weighting factor for level set function variation terms. If not set one is used. - scale_c (
Dataobject of shape (numLevelSets,``numLevelSets``)) – scale for the cross gradient terms. If not set one is assumed. Used for the case ifnumLevelSets> 1 only. Only valuesscale_c[l,k]in the lower triangle (l<k) are used.
- domain (
-
getArguments(m)¶
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getDomain()¶ returns the domain of the regularization term
Return type: Domain
-
getDualProduct(m, r)¶ returns the dual product of a gradient represented by X=r[1] and Y=r[0] with a level set function m:
Y_i*m_i + X_ij*m_{i,j}Return type: float
-
getGradient(m, grad_m)¶ returns the gradient of the cost function J with respect to m.
Note: This implementation returns Y_k=dPsi/dm_k and X_kj=dPsi/dm_kj
-
getInverseHessianApproximation(m, r, grad_m, solve=True)¶
-
getNorm(m)¶ returns the norm of
m.Parameters: m ( Data) – level set functionReturn type: float
-
getNumLevelSets()¶ returns the number of level set functions
Return type: int
-
getNumTradeOffFactors()¶ returns the number of trade-off factors being used.
Return type: int
-
getPDE()¶ returns the linear PDE to be solved for the Hessian Operator inverse
Return type: LinearPDE
-
getValue(m, grad_m)¶ returns the value of the cost function J with respect to m. This equation is specified in the inversion cookbook.
Return type: float
-
provides_inverse_Hessian_approximation= False¶
-
setTradeOffFactors(mu=None)¶ sets the trade-off factors for the level-set variation and the cross-gradient.
Parameters: mu ( listoffloator`numpy.array`) – new values for the trade-off factors where values mu[:numLevelSets] are the trade-off factors for the level-set variation and the remaining values for the cross-gradient part with mu_c[l,k]=mu[numLevelSets+l+((k-1)*k)/2] (l<k). If no values for mu are given ones are used. Values must be positive.
-
setTradeOffFactorsForCrossGradient(mu_c=None)¶ sets the trade-off factors for the cross-gradient terms.
Parameters: mu_c ( float,listoffloatornumpy.array) – new values for the trade-off factors for the cross-gradient terms. Values must be positive. If no value is given ones are used. Only value mu_c[l,k] for l<k are used.
-
setTradeOffFactorsForVariation(mu=None)¶ sets the trade-off factors for the level-set variation part.
Parameters: mu ( float,listoffloator`numpy.array`) – new values for the trade-off factors. Values must be positive.
-
updateHessian()¶ notifies the class to recalculate the Hessian operator.
-
-
class
esys.downunder.Ricker(f_dom=40, t_dom=None)¶ Bases:
esys.downunder.seismic.WaveletThe Ricker Wavelet w=f(t)
-
__init__(f_dom=40, t_dom=None)¶ Sets up a Ricker wavelet wih dominant frequence
f_domand center at timet_dom. Ift_domis not given an estimate for suitablet_domis calculated so f(0)~0.Note: maximum frequence is about 2 x the dominant frequence.
-
getAcceleration(t)¶ get the acceleration f’‘(t) at time
t
-
getCenter()¶ Return value of wavelet center
-
getTimeScale()¶ Returns the time scale which is the inverse of the largest frequence with a significant spectral component.
-
getValue(t)¶ get value of wavelet at time
t
-
getVelocity(t)¶ get the velocity f’(t) at time
t
-
-
class
esys.downunder.SchlumbergerSurvey(domain, primaryConductivity, secondaryConductivity, current, a, n, midPoint, directionVector, numElectrodes)¶ Bases:
esys.downunder.dcresistivityforwardmodeling.DcResistivityForwardSchlumberger survey forward calculation
-
__init__(domain, primaryConductivity, secondaryConductivity, current, a, n, midPoint, directionVector, numElectrodes)¶ This is a skeleton class for all the other forward modeling classes.
-
checkBounds()¶
-
getApparentResistivity(delPhiList)¶
-
getElectrodeDict()¶ retuns the electrode dictionary
-
getElectrodes()¶ retuns the list of electrodes with locations
-
getPotential()¶
-
getPotentialAnalytic()¶ Returns 3 list each made up of a number of list containing primary, secondary and total potentials diferences. Each of the lists contain a list for each value of n.
-
getPotentialNumeric()¶ Returns 3 list each made up of a number of list containing primary, secondary and total potentials diferences. Each of the lists contain a list for each value of n.
-
getSourcesSamples()¶ return a list of tuples of sample locations followed by a list of tuples of source locations.
-
-
class
esys.downunder.SeismicSource(x, y=0.0, omega=0.0, elevation=0.0, power=None, orientation=None)¶ Bases:
objectdescribes a seimic source by location (x,y), frequency omega, power (if known) and orientation (if known). this class is used to tag seismic data sources.
-
__init__(x, y=0.0, omega=0.0, elevation=0.0, power=None, orientation=None)¶ initiale the source
Parameters: - x (
float) – lateral x location - y (
float) – lateral y location - omega (
float) – frequency of source - elevation – elevation of source above reference level
- power (
complexorNone) – power of source at frequence - orientation (vector of appropriate length or
None) – oriententation of source in 3D or 2D (or None)
- x (
-
getElevation()¶ return elevation of source :rtype:
float
-
getFrequency()¶ return frequency of source :rtype:
float
-
getLocation()¶ return location of source :rtype:
tupleoffloat
-
getOrientation()¶ return power of source orientation at frequency :rtype: vector type object or
None
-
getPower()¶ return power of source at frequency :rtype:
complexorNone
-
-
class
esys.downunder.SelfDemagnetizationModel(domain, w, B, background_magnetic_flux_density, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Bases:
esys.downunder.forwardmodels.base.ForwardModelWithPotentialForward Model for magnetic inversion with self-demagnetization as described in the inversion cookbook.
-
__init__(domain, w, B, background_magnetic_flux_density, coordinates=None, fixPotentialAtBottom=False, tol=1e-08)¶ Creates a new magnetic model on the given domain with one or more surveys (w, B).
Parameters: - domain (
Domain) – domain of the model - w (
Vectoror list ofVector) – data weighting factors - B (
Vectoror list ofVector) – magnetic field data - background_magnetic_flux_density (
Vectoror list offloat) – background magnetic flux density (in Tesla) with components (B_east, B_north, B_vertical) - coordinates (
ReferenceSystemorSpatialCoordinateTransformation) – defines coordinate system to be used - fixPotentialAtBottom (
bool) – if true potential is fixed to zero at the bottom of the domain in addition to the top - tol (positive
float) – tolerance of underlying PDE
- domain (
-
getArguments(k)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: k ( Scalar) – susceptibilityReturns: scalar magnetic potential and corresponding magnetic field Return type: Scalar,Vector
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getData()¶ Returns the data
Return type: listofData
-
getDataFunctionSpace()¶ Returns the
FunctionSpaceof the dataReturn type: FunctionSpace
-
getDefect(k, phi, grad_phi, magnetic_flux_density)¶ Returns the value of the defect.
Parameters: - k (
Scalar) – susceptibility - phi (
Scalar) – corresponding potential - magnetic_flux_density (
Vector) – magnetic field
Return type: float- k (
-
getDefectGradient(result)¶
-
getDomain()¶ Returns the domain of the forward model.
Return type: Domain
-
getGradient(k, phi, grad_phi, magnetic_flux_density)¶ Returns the gradient of the defect with respect to susceptibility.
Parameters: - k (
Scalar) – susceptibility - phi (
Scalar) – corresponding potential - magnetic_flux_density (
Vector) – magnetic field
Return type: Scalar- k (
-
getMisfitWeights()¶ Returns the weights of the misfit function
Return type: listofData
-
getPotential(k)¶ Calculates the magnetic potential for a given susceptibility.
Parameters: k ( Scalar) – susceptibilityReturns: magnetic potential Return type: Scalar
-
getSurvey(index=None)¶ Returns the pair (data_index, weight_index), where data_i is the data of survey i, weight_i is the weighting factor for survey i. If index is None, all surveys will be returned in a pair of lists.
-
rescaleWeights(scale=1.0, k_scale=1.0)¶ rescales the weights such that
sum_s integrate( ( w_i[s] *B_i[s]) (w_j[s]*1/L_j) * L**2 * (background_magnetic_flux_density_j[s]*1/L_j) * k_scale )=scale
Parameters: - scale (positive
float) – scale of data weighting factors - k_scale (
Scalar) – scale of susceptibility.
- scale (positive
-
-
class
esys.downunder.SimpleSEGYWriter(receiver_group=None, source=0.0, sampling_interval=0.004, text='some seimic data')¶ Bases:
objectA simple writer for 2D and 3D seismic lines, in particular for synthetic data
Typical usage:
from esys.escript import unitsSI as U sw=SimpleSEGYWriter([0.,100*U.m,200*U,m,300.], source=200*U.m, sampling_interval=4*U.msec) while n < 10: sw.addRecord([i*2., i*0.67, i**2, -i*7]) sw.write('example.segy')
Note: the writer uses obspy-
__init__(receiver_group=None, source=0.0, sampling_interval=0.004, text='some seimic data')¶ initalize writer
Parameters: - receiver_group – list of receiver coordinates (in meters). For the 2D case a list of floats is given, for the 3D case a list of coordinate tuples are given
- source – coordinates of the source (in meters). For the 2D case a single floats is given, for the 3D case a coordinate tuples
- sampling_interval – sample rate in seconds
- text – a text for the header file (e.g a description)
-
COORDINATE_SCALE= 1000.0¶
-
addRecord(record)¶ Adds a record to the traces. A time difference of sample_interval between two records is assumed. The record mast be a list of as many values as given receivers or a float if a single receiver is used.
Parameters: record – list of tracks to be added to the record.
-
getSamplingInterval()¶ returns the sampling interval in seconds.
-
obspy_available()¶ for checking if the obspy module is available
-
write(filename)¶ writes to segy file
Parameters: filename – file name Note: the function uses the obspymodule.
-
-
class
esys.downunder.SmoothAnomaly(lx, ly, lz, x, y, depth, v_inner=None, v_outer=None)¶ Bases:
esys.downunder.datasources.SourceFeatureA source feature in the form of a blob (roughly gaussian).
-
__init__(lx, ly, lz, x, y, depth, v_inner=None, v_outer=None)¶ Intializes the smooth anomaly data.
Parameters: - lx – size of blob in x-dimension
- ly – size of blob in y-dimension
- lz – size of blob in z-dimension
- x – location of blob in x-dimension
- y – location of blob in y-dimension
- depth – depth of blob
- v_inner – value in the centre of the blob
- v_outer – value in the periphery of the blob
-
getMask(x)¶ Returns the mask of the area of interest for this feature. That is, mask is non-zero where the value returned by
getValue()should be applied, zero elsewhere.
-
getValue(x)¶ Returns the value for the area covered by mask. It can be constant or a
Dataobject with spatial dependency.
-
-
class
esys.downunder.SonicHTIWave(domain, v_p, wavelet, source_tag, source_vector=[1.0, 0.0], eps=0.0, delta=0.0, azimuth=0.0, dt=None, p0=None, v0=None, absorption_zone=300.0, absorption_cut=0.01, lumping=True)¶ Bases:
esys.downunder.seismic.WaveBaseSolving the HTI wave equation (along the x_0 axis) with azimuth (rotation around verticle axis) under the assumption of zero shear wave velocities The unknowns are the transversal (along x_0) and vertial stress (Q, P)
Note: In case of a two dimensional domain the second spatial dimenion is depth. -
__init__(domain, v_p, wavelet, source_tag, source_vector=[1.0, 0.0], eps=0.0, delta=0.0, azimuth=0.0, dt=None, p0=None, v0=None, absorption_zone=300.0, absorption_cut=0.01, lumping=True)¶ initialize the HTI wave solver
Parameters: - domain (
Doamin) – domain of the problem - v_p (
escript.Scalar) – vertical p-velocity field - v_s (
escript.Scalar) – vertical s-velocity field - wavelet (
Wavelet) – wavelet to describe the time evolution of source term - source_tag ('str' or 'int') – tag of the source location
- source_vector – source orientation vector
- eps – first Thompsen parameter
- azimuth – azimuth (rotation around verticle axis)
- gamma – third Thompsen parameter
- rho – density
- dt – time step size. If not present a suitable time step size is calculated.
- p0 – initial solution (Q(t=0), P(t=0)). If not present zero is used.
- v0 – initial solution change rate. If not present zero is used.
- absorption_zone – thickness of absorption zone
- absorption_cut – boundary value of absorption decay factor
- lumping – if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
- domain (
-
getTimeStepSize()¶
-
update(t)¶ returns the solution for the next time marker t which needs to greater than the time marker from the previous call.
-
-
class
esys.downunder.SonicWave(domain, v_p, wavelet, source_tag, dt=None, p0=None, p0_t=None, absorption_zone=300.0, absorption_cut=0.01, lumping=True)¶ Bases:
esys.downunder.seismic.WaveBaseSolving the sonic wave equation
p_tt = (v_p**2 * p_i)_i + f(t) * delta_swhere (p-) velocity v_p.f(t) is wavelet acting at a point source term at positon s
-
__init__(domain, v_p, wavelet, source_tag, dt=None, p0=None, p0_t=None, absorption_zone=300.0, absorption_cut=0.01, lumping=True)¶ initialize the sonic wave solver
Parameters: - domain (
Domain) – domain of the problem - v_p (
escript.Scalar) – p-velocity field - wavelet (
Wavelet) – wavelet to describe the time evolution of source term - source_tag ('str' or 'int') – tag of the source location
- dt – time step size. If not present a suitable time step size is calculated.
- p0 – initial solution. If not present zero is used.
- p0_t – initial solution change rate. If not present zero is used.
- absorption_zone – thickness of absorption zone
- absorption_cut – boundary value of absorption decay factor
- lumping – if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
- domain (
-
getTimeStepSize()¶
-
update(t)¶ returns the solution for the next time marker t which needs to greater than the time marker from the previous call.
-
-
class
esys.downunder.SpatialCoordinateTransformation(domain, reference=<esys.downunder.coordinates.CartesianReferenceSystem object>)¶ Bases:
objectDefines an orthogonal coordinate transformation from a domain into the Cartesian domain using a coordinate transformation.
The default implementation is the identity transformation (i.e. no changes are applied to the domain). Overwrite the appropriate methods to define other coordinate systems.
-
__init__(domain, reference=<esys.downunder.coordinates.CartesianReferenceSystem object>)¶ set up the orthogonal coordinate transformation.
Parameters: - domain (
esys.escript.AbstractDomain) – domain in the domain of the coordinate transformation - reference (
ReferenceSystem) – the reference system
- domain (
-
getDomain()¶ returns the domain of the coordinate transformation.
Return type: esys.escript.AbstractDomain
-
getGradient(u)¶ returns the gradient of a scalar function in direction of the coordinate axis.
Return type: esys.escript.Vector
-
getReferenceSystem()¶ returns the reference system used to to define the coordinate transformation
Return type: ReferenceSystem
-
getScalingFactors()¶ returns the scaling factors
Return type: esys.escript.Vector
-
getVolumeFactor()¶ returns the volume factor for the coordinate transformation
Return type: esys.escript.Scalar
-
isCartesian()¶ returns
Trueif the scaling factors (and the volume factor) are equal to 1Return type: bool
-
isTheSame(other)¶ test if argument
otherdefines the same coordinate transformationParameters: other ( SpatialCoordinateTransformation) – a second coordinate transformationReturns: Trueif other defines then same coordinate transformationReturn type: bool
-
-
class
esys.downunder.SplitInversionCostFunction(numLevelSets=None, numModels=None, numMappings=None, splitworld=None, worldsinit_fn=None)¶ Bases:
esys.downunder.costfunctions.MeteredCostFunctionClass to define cost function J(m) for inversion with one or more forward models based on a multi-valued level set function m:
J(m) = J_reg(m) + sum_f mu_f * J_f(p)
where J_reg(m) is the regularization and cross gradient component of the cost function applied to a level set function m, J_f(p) are the data defect cost functions involving a physical forward model using the physical parameter(s) p and mu_f is the trade-off factor for model f.
A forward model depends on a set of physical parameters p which are constructed from components of the level set function m via mappings.
- Example 1 (single forward model):
- m=Mapping() f=ForwardModel() J=InversionCostFunction(Regularization(), m, f)
- Example 2 (two forward models on a single valued level set)
m0=Mapping() m1=Mapping() f0=ForwardModel() f1=ForwardModel()
J=InversionCostFunction(Regularization(), mappings=[m0, m1], forward_models=[(f0, 0), (f1,1)])
- Example 3 (two forward models on 2-valued level set)
m0=Mapping() m1=Mapping() f0=ForwardModel() f1=ForwardModel()
J=InversionCostFunction(Regularization(self.numLevelSets=2), mappings=[(m0,0), (m1,0)], forward_models=[(f0, 0), (f1,1)])
Note: If provides_inverse_Hessian_approximation is true, then the class provides an approximative inverse of the Hessian operator. -
__init__(numLevelSets=None, numModels=None, numMappings=None, splitworld=None, worldsinit_fn=None)¶ fill this in.
-
calculateGradient(vnames1, vnames2)¶ The gradient operation produces two components (designated (Y^,X) in the non-split version). vnames1 gives the variable name(s) where the first component should be stored. vnames2 gives the variable name(s) where the second component should be stored.
-
static
calculatePropertiesHelper(self, m, mappings)¶ returns a list of the physical properties from a given level set function m using the mappings of the cost function.
Parameters: m ( Data) – level set functionReturn type: listofData
-
calculateValue(vname)¶
-
createLevelSetFunction(*props)¶ returns an instance of an object used to represent a level set function initialized with zeros. Components can be overwritten by physical properties
props. If present entries must correspond to themappingsarguments in the constructor. UseNonefor properties for which no value is given.
-
static
createLevelSetFunctionHelper(self, regularization, mappings, *props)¶ Returns an object (init-ed) with 0s. Components can be overwritten by physical properties
props. If present entries must correspond to themappingsarguments in the constructor. UseNonefor properties for which no value is given.
-
static
formatMappings(mappings, numLevelSets)¶
-
static
formatModels(forward_models, numMappings)¶
-
getArguments(x)¶ returns precalculated values that are shared in the calculation of f(x) and grad f(x) and the Hessian operator
Note
The tuple returned by this call will be passed back to this
CostFunctionin other calls(eg:getGradient). Its contents are not specified at this level because no code, other than theCostFunctionwhich created it, will be interacting with it. That is, the implementor can put whatever information they find useful in it.Parameters: x (x-type) – location of derivative Return type: tuple
-
getComponentValues(m, *args)¶
-
getDomain()¶ returns the domain of the cost function
Return type: Domain
-
getDualProduct(x, r)¶ returns the dual product of
xandrReturn type: float
-
getForwardModel(idx=None)¶ returns the idx-th forward model.
Parameters: idx ( int) – model index. If cost function contains one model onlyidxcan be omitted.
-
getGradient(x, *args)¶ returns the gradient of f at x using the precalculated values for x.
Parameters: - x (x-type) – location of derivative
- args – pre-calculated values for
xfromgetArguments()
Return type: r-type
-
getInverseHessianApproximation(x, r, *args)¶ returns an approximative evaluation p of the inverse of the Hessian operator of the cost function for a given gradient r at a given location x: H(x) p = r
Note
In general it is assumed that the Hessian H(x) needs to be calculate in each call for a new location x. However, the solver may suggest that this is not required, typically when the iteration is close to completeness.
Parameters: - x (x-type) – location of Hessian operator to be evaluated.
- r (r-type) – a given gradient
- args – pre-calculated values for
xfromgetArguments()
Return type: x-type
-
static
getModelArgs(self, fwdmodels)¶ Attempts to import the arguments for forward models, if they are not available, Computes and exports them
-
getNorm(x)¶ returns the norm of
xReturn type: float
-
getNumTradeOffFactors()¶ returns the number of trade-off factors being used including the trade-off factors used in the regularization component.
Return type: int
-
getProperties(m, return_list=False)¶ returns a list of the physical properties from a given level set function m using the mappings of the cost function.
Parameters: - m (
Data) – level set function - return_list (
bool) – ifTruea list is returned.
Return type: listofData- m (
-
getRegularization()¶ returns the regularization
Return type: Regularization
-
getTradeOffFactors(mu=None)¶ returns a list of the trade-off factors.
Return type: listoffloat
-
getTradeOffFactorsModels()¶ returns the trade-off factors for the forward models
Return type: floatorlistoffloat
-
getValue(x, *args)¶ returns the value f(x) using the precalculated values for x.
Parameters: x (x-type) – a solution approximation Return type: float
-
provides_inverse_Hessian_approximation= True¶
-
resetCounters()¶ resets all statistical counters
-
setPoint()¶
-
setTradeOffFactors(mu=None)¶ sets the trade-off factors for the forward model and regularization terms.
Parameters: mu ( listoffloat) – list of trade-off factors.
-
setTradeOffFactorsModels(mu=None)¶ sets the trade-off factors for the forward model components.
Parameters: mu ( floatin case of a single model or alistoffloatwith the length of the number of models.) – list of the trade-off factors. If not present ones are used.
-
setTradeOffFactorsRegularization(mu=None, mu_c=None)¶ sets the trade-off factors for the regularization component of the cost function, see
Regularizationfor details.Parameters: - mu – trade-off factors for the level-set variation part
- mu_c – trade-off factors for the cross gradient variation part
-
static
subworld_setMu_model(self, **args)¶
-
updateHessian()¶ notifies the class that the Hessian operator needs to be updated.
-
static
update_point_helper(self, newpoint)¶ Call within a subworld to set ‘current_point’ to newpoint and update all the cached args info
-
class
esys.downunder.SplitMinimizerLBFGS(J=None, m_tol=0.0001, J_tol=None, imax=300)¶ Bases:
esys.downunder.minimizers.AbstractMinimizerMinimizer that uses the limited-memory Broyden-Fletcher-Goldfarb-Shanno method.
version modified to fit with split world.
-
__init__(J=None, m_tol=0.0001, J_tol=None, imax=300)¶ Initializes a new minimizer for a given cost function.
Parameters: - J (
CostFunction) – the cost function to be minimized - m_tol (float) – terminate interations when relative change of the level set function is less than or equal m_tol
- J (
-
getCostFunction()¶ return the cost function to be minimized
Return type: CostFunction
-
getOptions()¶ Returns a dictionary of minimizer-specific options.
-
getResult()¶ Returns the result of the minimization.
-
logSummary()¶ Outputs a summary of the completed minimization process to the logger.
-
static
move_point_from_base(self, **kwargs)¶
-
run()¶ This version relies on the costfunction already having an initial guess loaded. It also does not return the result, meaning a job needs to be submitted to get the result out.
-
setCallback(callback)¶ Sets a callback function to be called after every iteration. It is up to the specific implementation what arguments are passed to the callback. Subclasses should at least pass the current iteration number k, the current estimate x, and possibly f(x), grad f(x), and the current error.
-
setCostFunction(J)¶ set the cost function to be minimized
Parameters: J ( CostFunction) – the cost function to be minimized
-
setMaxIterations(imax)¶ Sets the maximum number of iterations before the minimizer terminates.
-
setOptions(**opts)¶ Sets minimizer-specific options. For a list of possible options see
getOptions().
-
setTolerance(m_tol=0.0001, J_tol=None)¶ Sets the tolerance for the stopping criterion. The minimizer stops when an appropriate norm is less than
m_tol.
-
-
class
esys.downunder.SplitRegularization(domain, numLevelSets=1, w0=None, w1=None, wc=None, location_of_set_m=<esys.escriptcore.escriptcpp.Data object>, useDiagonalHessianApproximation=False, tol=1e-08, coordinates=None, scale=None, scale_c=None)¶ Bases:
esys.downunder.costfunctions.CostFunctionThe regularization term for the level set function
mwithin the cost function J for an inversion:J(m)=1/2 * sum_k integrate( mu[k] * ( w0[k] * m_k**2 * w1[k,i] * m_{k,i}**2) + sum_l<k mu_c[l,k] wc[l,k] * | curl(m_k) x curl(m_l) |^2
where w0[k], w1[k,i] and wc[k,l] are non-negative weighting factors and mu[k] and mu_c[l,k] are trade-off factors which may be altered during the inversion. The weighting factors are normalized such that their integrals over the domain are constant:
integrate(w0[k] + inner(w1[k,:],1/L[:]**2))=scale[k] volume(domain)* integrate(wc[l,k]*1/L**4)=scale_c[k] volume(domain) *
-
__init__(domain, numLevelSets=1, w0=None, w1=None, wc=None, location_of_set_m=<esys.escriptcore.escriptcpp.Data object>, useDiagonalHessianApproximation=False, tol=1e-08, coordinates=None, scale=None, scale_c=None)¶ initialization.
Parameters: - domain (
Domain) – domain - numLevelSets (
int) – number of level sets - w0 (
ScalarifnumLevelSets== 1 orDataobject of shape (numLevelSets,) ifnumLevelSets> 1) – weighting factor for the m**2 term. If not set zero is assumed. - w1 (
VectorifnumLevelSets== 1 orDataobject of shape (numLevelSets, DIM) ifnumLevelSets> 1) – weighting factor for the grad(m_i) terms. If not set zero is assumed - wc (
Dataobject of shape (numLevelSets,numLevelSets)) – weighting factor for the cross gradient terms. If not set zero is assumed. Used for the case ifnumLevelSets> 1 only. Only valueswc[l,k]in the lower triangle (l<k) are used. - location_of_set_m (
ScalarifnumLevelSets== 1 orDataobject of shape (numLevelSets,) ifnumLevelSets> 1) – marks location of zero values of the level set functionmby a positive entry. - useDiagonalHessianApproximation (
bool) – if True cross gradient terms between level set components are ignored when calculating approximations of the inverse of the Hessian Operator. This can speed-up the calculation of the inverse but may lead to an increase of the number of iteration steps in the inversion. - tol (positive
float) – tolerance when solving the PDE for the inverse of the Hessian Operator - coordinates (ReferenceSystem` or
SpatialCoordinateTransformation) – defines coordinate system to be used - scale (
ScalarifnumLevelSets== 1 orDataobject of shape (numLevelSets,) ifnumLevelSets> 1) – weighting factor for level set function variation terms. If not set one is used. - scale_c (
Dataobject of shape (numLevelSets,``numLevelSets``)) – scale for the cross gradient terms. If not set one is assumed. Used for the case ifnumLevelSets> 1 only. Only valuesscale_c[l,k]in the lower triangle (l<k) are used.
- domain (
-
getArguments(m)¶
-
getCoordinateTransformation()¶ returns the coordinate transformation being used
Return type: CoordinateTransformation
-
getDomain()¶ returns the domain of the regularization term
Return type: Domain
-
getDualProduct(m, r)¶ returns the dual product of a gradient represented by X=r[1] and Y=r[0] with a level set function m:
Y_i*m_i + X_ij*m_{i,j}Return type: float
-
getGradient()¶ returns the gradient of f at x using the precalculated values for x.
Parameters: - x (x-type) – location of derivative
- args – pre-calculated values for
xfromgetArguments()
Return type: r-type
-
getGradientAtPoint()¶ returns the gradient of the cost function J with respect to m.
Note: This implementation returns Y_k=dPsi/dm_k and X_kj=dPsi/dm_kj
-
getInverseHessianApproximation(x, r, *args)¶ returns an approximative evaluation p of the inverse of the Hessian operator of the cost function for a given gradient r at a given location x: H(x) p = r
Parameters: - x (x-type) – location of Hessian operator to be evaluated
- r (r-type) – a given gradient
- args – pre-calculated values for
xfromgetArguments()
Return type: x-type
Note: In general it is assumed that the Hessian H(x) needs to be calculated in each call for a new location x. However, the solver may suggest that this is not required, typically when the iteration is close to completeness.
Note: Subclasses that implement this method should set the class variable
provides_inverse_Hessian_approximationtoTrueto enable the solver to call this method.
-
getInverseHessianApproximationAtPoint(r, solve=True)¶
-
getNorm(m)¶ returns the norm of
m.Parameters: m ( Data) – level set functionReturn type: float
-
getNumLevelSets()¶ returns the number of level set functions
Return type: int
-
getNumTradeOffFactors()¶ returns the number of trade-off factors being used.
Return type: int
-
getPDE()¶ returns the linear PDE to be solved for the Hessian Operator inverse
Return type: linearPDEs.LinearPDE
-
getValue(m, grad_m)¶ returns the value of the cost function J with respect to m. This equation is specified in the inversion cookbook.
Return type: float
-
getValueAtPoint()¶ returns the value of the cost function J with respect to m. This equation is specified in the inversion cookbook.
Return type: float
-
provides_inverse_Hessian_approximation= False¶
-
setPoint(m)¶ sets the point which this function will work with
Parameters: m ( Data) – level set function
-
setTradeOffFactors(mu=None)¶ sets the trade-off factors for the level-set variation and the cross-gradient.
Parameters: mu ( listoffloator`numpy.array`) – new values for the trade-off factors where values mu[:numLevelSets] are the trade-off factors for the level-set variation and the remaining values for the cross-gradient part with mu_c[l,k]=mu[numLevelSets+l+((k-1)*k)/2] (l<k). If no values for mu are given ones are used. Values must be positive.
-
setTradeOffFactorsForCrossGradient(mu_c=None)¶ sets the trade-off factors for the cross-gradient terms.
Parameters: mu_c ( float,listoffloatornumpy.array) – new values for the trade-off factors for the cross-gradient terms. Values must be positive. If no value is given ones are used. Only value mu_c[l,k] for l<k are used.
-
setTradeOffFactorsForVariation(mu=None)¶ sets the trade-off factors for the level-set variation part.
Parameters: mu ( float,listoffloator`numpy.array`) – new values for the trade-off factors. Values must be positive.
-
updateHessian()¶ notifies the class to recalculate the Hessian operator.
-
-
class
esys.downunder.StrongJointGravityMagneticInversion(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ Bases:
esys.downunder.inversions.InversionDriverDriver class to perform a joint inversion of Gravity (Bouguer) and magnetic anomaly data with the assumption that there is a functional relationship between density and susceptibility.
The class uses the standard
Regularizationclass for a single level set function,DensityMappingandSusceptibilityMappingmappings, the gravity forward modelGravityModeland the linear magnetic forward modelMagneticModel.-
__init__(solverclass=None, debug=False, self_demagnetization=False, magnetic_intensity_data=False)¶ creates an instance of an inversion driver.
Parameters: - solverclass ('AbstractMinimizer'.) – class of the solver to be used.
- self_demagnetization – if True self-demagnitization is applied.
- magnetic_intensity_data – if True magnetic intensity is used in the cost function.
-
DENSITY= 0¶
-
SUSCEPTIBILITY= 1¶
-
fixGravityPotentialAtBottom(status=False)¶ indicates to fix the gravity potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True gravity potential at the bottom is set to zero
-
fixMagneticPotentialAtBottom(status=True)¶ indicates to fix the magnetic potential at the bottom to zero (in addition to the top)
Parameters: status ( bool) – if True magnetic potential at the bottom is set to zero
-
getCostFunction()¶ returns the cost function of the inversion.
Return type: ‘InversionCostFunction’
-
getDomain()¶ returns the domain of the inversion
Return type: Domain
-
getLevelSetFunction()¶ returns the level set function as solution of the optimization problem
Return type: Data
-
getSolver()¶ The solver to be used in the inversion process. See the minimizers module for available solvers. By default, the L-BFGS minimizer is used.
Return type: ‘AbstractMinimizer’.
-
isSetUp()¶ returns True if the inversion is set up and is ready to run.
Return type: bool
-
run()¶ Executes the inversion.
Returns: physical parameters as result of the inversion Return type: listof physical parameters or a physical parameter
-
setCostFunction(costfunction)¶ sets the cost function of the inversion. This function needs to be called before the inversion iteration can be started.
Parameters: costfunction ('InversionCostFunction') – domain of the inversion
-
setInitialGuess(rho=None, k=None)¶ set the initial guess rho for density and k for susceptibility for the inversion iteration.
Parameters: - rho (
Scalar) – initial value for the density anomaly. - k (
Scalar) – initial value for the susceptibility anomaly.
- rho (
-
setSolverCallback(callback=None)¶ Sets the callback function which is called after every solver iteration.
-
setSolverMaxIterations(maxiter=None)¶ Sets the maximum number of solver iterations to run. If
maxiteris reached the iteration is terminated andMinimizerMaxIterReachedis thrown.Parameters: maxiter (positive int) – maximum number of iteration steps.
-
setSolverTolerance(m_tol=None, J_tol=None)¶ Sets the error tolerance for the solver. An acceptable solution is considered to be found once the tolerance is reached.
Parameters: - m_tol (
floatorNone) – tolerance for changes to level set function. IfNonechanges to the level set function are not checked for convergence during iteration. - J_tol (
floatorNone) – tolerance for changes to cost function. IfNonechanges to the cost function are not checked for convergence during iteration.
Note: if both arguments are
Nonethe default setting m_tol=1e-4, J_tol=None is used.- m_tol (
-
setup(domainbuilder, rho0=None, drho=None, rho_z0=None, rho_beta=None, k0=None, dk=None, k_z0=None, k_beta=None, w0=None, w1=None, w_gc=None, rho_at_depth=None, k_at_depth=None)¶ Sets up the inversion from an instance
domainbuilderof aDomainBuilder. Gravity and magnetic data attached to thedomainbuilderare considered in the inversion. If magnetic data are given as scalar it is assumed that values are collected in direction of the background magnetic field.Parameters: - domainbuilder (
DomainBuilder) – Domain builder object with gravity source(s) - rho0 (
floatorScalar) – reference density, seeDensityMapping. If not specified, zero is used. - drho (
floatorScalar) – density scale, seeDensityMapping. If not specified, 2750 kg/m^3 is used. - rho_z0 (
floatorScalar) – reference depth for depth weighting for density, seeDensityMapping. If not specified, zero is used. - rho_beta (
floatorScalar) – exponent for density depth weighting, seeDensityMapping. If not specified, zero is used. - k0 (
floatorScalar) – reference susceptibility, seeSusceptibilityMapping. If not specified, zero is used. - dk (
floatorScalar) – susceptibility scale, seeSusceptibilityMapping. If not specified, 1. is used. - k_z0 (
floatorScalar) – reference depth for susceptibility depth weighting, seeSusceptibilityMapping. If not specified, zero is used. - k_beta (
floatorScalar) – exponent for susceptibility depth weighting, seeSusceptibilityMapping. If not specified, zero is used. - w0 (
Scalarorfloat) – weighting factor for level set term in the regularization. If not set zero is assumed. - w1 (
es.Dataorndarrayof shape (DIM,)) – weighting factor for the gradient term in the regularization seeRegularization. If not set zero is assumed. - w_gc (
Scalarorfloat) – weighting factor for the cross gradient term in the regularization, seeRegularization. If not set one is assumed. - k_at_depth (
floatorNone) – value for susceptibility at depth, seeDomainBuilder. - rho_at_depth (
floatorNone) – value for density at depth, seeDomainBuilder.
- domainbuilder (
-
siloWriterCallback(k, x, Jx, g_Jx, norm_dJ=None, norm_dx=None)¶ callback function that can be used to track the solution
Parameters: - k – iteration count
- x – current m approximation
- Jx – value of cost function
- g_Jx – gradient of f at x
-
-
class
esys.downunder.Subsidence(domain, w, d, lam, mu, coordinates=None, tol=1e-08)¶ Bases:
esys.downunder.forwardmodels.base.ForwardModelForward Model for subsidence inversion minimizing integrate( (inner(w,u)-d)**2) where u is the surface displacement due to a pressure change P
-
__init__(domain, w, d, lam, mu, coordinates=None, tol=1e-08)¶ Creates a new subsidence on the given domain
Parameters: - domain (
Domain) – domain of the model - w (
VectorwithFunctionOnBoundary) – data weighting factors and direction - d (
ScalarwithFunctionOnBoundary) – displacement measured at surface - lam (
ScalarwithFunction) – 1st Lame coefficient - lam – 2st Lame coefficient/Shear modulus
- coordinates (
ReferenceSystemorSpatialCoordinateTransformation) – defines coordinate system to be used (not supported yet)) - tol (positive
float) – tolerance of underlying PDE
- domain (
-
getArguments(P)¶ Returns precomputed values shared by
getDefect()andgetGradient().Parameters: P ( Scalar) – pressureReturns: displacement u Return type: Vector
-
getCoordinateTransformation()¶
-
getDefect(P, u)¶ Returns the value of the defect.
Parameters: - P (
Scalar) – pressure - u (
Vector) – corresponding displacement
Return type: float- P (
-
getGradient(P, u)¶ Returns the gradient of the defect with respect to susceptibility.
Parameters: - P (
Scalar) – pressure - u (
Vector) – corresponding displacement
Return type: Scalar- P (
-
rescaleWeights(scale=1.0, P_scale=1.0)¶ rescales the weights
Parameters: - scale (positive
float) – scale of data weighting factors - P_scale (
Scalar) – scale of pressure increment
- scale (positive
-
-
class
esys.downunder.SusceptibilityMapping(domain, z0=None, k0=None, dk=None, beta=None)¶ Bases:
esys.downunder.mappings.LinearMappingSusceptibility mapping with depth weighting
k = k0 + dk * ( (x_2 - z0)/l_z)^(beta/2) ) * m
-
__init__(domain, z0=None, k0=None, dk=None, beta=None)¶ set up mapping
Parameters: - domain (
Domain) – domain of the mapping - z0 (scalar) – depth weighting offset. If not present no depth scaling is applied.
- k0 (scalar) – reference density, defaults to 0
- dk (scalar) – susceptibility scale, defaults to 1
- beta (
float) – depth weighting exponent, defaults to 2
- domain (
-
getDerivative(m)¶ returns the value for the derivative of the mapping for m
-
getInverse(p)¶ returns the value of the inverse of the mapping for s
-
getTypicalDerivative()¶ returns a typical value for the derivative
-
getValue(m)¶ returns the value of the mapping for m
-
-
class
esys.downunder.SyntheticData(data_type, n_length=1, n_depth=1, depth_offset=0.0, depth=None, amplitude=None, DIM=2, number_of_elements=10, length=1000.0, B_b=None, data_offset=0, full_knowledge=False, s=0.0)¶ Bases:
esys.downunder.datasources.SyntheticDataBaseDefines synthetic gravity/magnetic data based on harmonic property anomaly
rho = amplitude * sin(n_depth * pi /depth * (z+depth_offset)) * sin(n_length * pi /length * (x - shift) )for all x and z<=0. For z>0 rho = 0.
-
__init__(data_type, n_length=1, n_depth=1, depth_offset=0.0, depth=None, amplitude=None, DIM=2, number_of_elements=10, length=1000.0, B_b=None, data_offset=0, full_knowledge=False, s=0.0)¶ Parameters: - data_type (
DataSource.GRAVITY,DataSource.MAGNETIC) – data type indicator - n_length (
int) – number of oscillations in the anomaly data within the observation region - n_depth (
int) – number of oscillations in the anomaly data below surface - depth_offset (
float) – vertical offset of the data - depth (
float) – vertical extent in the anomaly data. If not present the depth of the domain is used. - amplitude – data amplitude. Default value is 200 U.kg/U.m**3 for gravity and 0.1 for magnetic data.
- DIM (
int(2 or 3)) – spatial dimensionality - number_of_elements (
int) – lateral number of elements in the region where data are collected - length (
float) – lateral extent of the region where data are collected - B_b (
listofScalar) – background magnetic flux density [B_r, B_latiude, B_longitude]. Only used for magnetic data. - data_offset (
float) – offset of the data collection region from the surface - full_knowledge (
Bool) – ifTruedata are collected from the entire subsurface region. This is mainly for testing.
- data_type (
-
ACOUSTIC= 2¶
-
GRAVITY= 0¶
-
MAGNETIC= 1¶
-
MT= 3¶
-
getDataExtents()¶ returns the lateral data extend of the data set
-
getDataType()¶ returns the data type
-
getHeightScale()¶ returns the height scale factor to convert from meters to the appropriate units of the reference system used.
Return type: float
-
getReferenceProperty(domain=None)¶ Returns the reference
Dataobject that was used to generate the gravity/susceptibility anomaly data.
-
getReferenceSystem()¶ returns the reference coordinate system
Return type: ReferenceSystem
-
getSubsamplingFactor()¶ Returns the subsampling factor that was set via
setSubsamplingFactor(see there).
-
getSurveyData(domain, origin, number_of_elements, spacing)¶ returns the survey data placed on a given domain.
Parameters: - domain (
Domain) – domain on which the data are to be placed - origin (
listoffloat) – origin of the domain - number_of_elements (
listofint) – number of elements (or cells) in each spatial direction used to span the domain - spacing (
listoffloat) – cell size in each spatial direction
Returns: observed gravity field or magnetic flux density for each cell in the domain and for each cell an indicator 1/0 if the data are valid or not.
Return type: pair of
Scalar- domain (
-
getTags()¶ returns the list of tags
Return type: list
-
getUtmZone()¶ returns a dummy UTM zone since this class does not use real coordinate values.
-
hasTag(tag)¶ returns true if the data set has tag
tagReturn type: bool
-
setSubsamplingFactor(f)¶ Sets the data subsampling factor (default=1).
The factor is applied in all dimensions. For example a 2D dataset with 300 x 150 data points will be reduced to 150 x 75 when a subsampling factor of 2 is used. This becomes important when adding data of varying resolution to a
DomainBuilder.
-
-
class
esys.downunder.SyntheticDataBase(data_type, DIM=2, number_of_elements=10, length=1000.0, B_b=None, data_offset=0, full_knowledge=False)¶ Bases:
esys.downunder.datasources.DataSourceBase class to define reference data based on a given property distribution (density or susceptibility). Data are collected from a square region of vertical extent
lengthon a grid withnumber_of_elementscells in each direction.The synthetic data are constructed by solving the appropriate forward problem. Data can be sampled with an offset from the surface at z=0 or using the entire subsurface region.
-
__init__(data_type, DIM=2, number_of_elements=10, length=1000.0, B_b=None, data_offset=0, full_knowledge=False)¶ Parameters: - data_type (
DataSource.GRAVITY,DataSource.MAGNETIC) – data type indicator - DIM (
int(2 or 3)) – number of spatial dimensions - number_of_elements (
int) – lateral number of elements in the region where data are collected - length (
float) – lateral extent of the region where data are collected - B_b (
listofScalar) – background magnetic flux density [B_r, B_latiude, B_longitude]. Only used for magnetic data. - data_offset (
float) – offset of the data collection region from the surface - full_knowledge (
Bool) – ifTruedata are collected from the entire subsurface region. This is mainly for testing.
- data_type (
-
ACOUSTIC= 2¶
-
GRAVITY= 0¶
-
MAGNETIC= 1¶
-
MT= 3¶
-
getDataExtents()¶ returns the lateral data extend of the data set
-
getDataType()¶ returns the data type
-
getHeightScale()¶ returns the height scale factor to convert from meters to the appropriate units of the reference system used.
Return type: float
-
getReferenceProperty(domain=None)¶ Returns the reference
Dataobject that was used to generate the gravity/susceptibility anomaly data.Returns: the density or susceptibility anomaly used to create the survey data Note: it can be assumed that in the first call the domainargument is present so the actual anomaly data can be created. In subsequent calls this may not be true.Note: method needs to be overwritten
-
getReferenceSystem()¶ returns the reference coordinate system
Return type: ReferenceSystem
-
getSubsamplingFactor()¶ Returns the subsampling factor that was set via
setSubsamplingFactor(see there).
-
getSurveyData(domain, origin, number_of_elements, spacing)¶ returns the survey data placed on a given domain.
Parameters: - domain (
Domain) – domain on which the data are to be placed - origin (
listoffloat) – origin of the domain - number_of_elements (
listofint) – number of elements (or cells) in each spatial direction used to span the domain - spacing (
listoffloat) – cell size in each spatial direction
Returns: observed gravity field or magnetic flux density for each cell in the domain and for each cell an indicator 1/0 if the data are valid or not.
Return type: pair of
Scalar- domain (
-
getTags()¶ returns the list of tags
Return type: list
-
getUtmZone()¶ returns a dummy UTM zone since this class does not use real coordinate values.
-
hasTag(tag)¶ returns true if the data set has tag
tagReturn type: bool
-
setSubsamplingFactor(f)¶ Sets the data subsampling factor (default=1).
The factor is applied in all dimensions. For example a 2D dataset with 300 x 150 data points will be reduced to 150 x 75 when a subsampling factor of 2 is used. This becomes important when adding data of varying resolution to a
DomainBuilder.
-
-
class
esys.downunder.SyntheticFeatureData(data_type, features, DIM=2, number_of_elements=10, length=1000.0, B_b=None, data_offset=0, full_knowledge=False)¶ Bases:
esys.downunder.datasources.SyntheticDataBaseUses a list of
SourceFeatureobjects to define synthetic anomaly data.-
__init__(data_type, features, DIM=2, number_of_elements=10, length=1000.0, B_b=None, data_offset=0, full_knowledge=False)¶ Parameters: - data_type (
DataSource.GRAVITY,DataSource.MAGNETIC) – data type indicator - features (
listofSourceFeature) – list of features. It is recommended that the features are located entirely below the surface. - DIM (
int(2 or 3)) – spatial dimensionality - number_of_elements (
int) – lateral number of elements in the region where data are collected - length (
float) – lateral extent of the region where data are collected - B_b (
listofScalar) – background magnetic flux density [B_r, B_latiude, B_longitude]. Only used for magnetic data. - data_offset (
float) – offset of the data collection region from the surface - full_knowledge (
Bool) – ifTruedata are collected from the entire subsurface region. This is mainly for testing.
- data_type (
-
ACOUSTIC= 2¶
-
GRAVITY= 0¶
-
MAGNETIC= 1¶
-
MT= 3¶
-
getDataExtents()¶ returns the lateral data extend of the data set
-
getDataType()¶ returns the data type
-
getHeightScale()¶ returns the height scale factor to convert from meters to the appropriate units of the reference system used.
Return type: float
-
getReferenceProperty(domain=None)¶ Returns the reference
Dataobject that was used to generate the gravity/susceptibility anomaly data.
-
getReferenceSystem()¶ returns the reference coordinate system
Return type: ReferenceSystem
-
getSubsamplingFactor()¶ Returns the subsampling factor that was set via
setSubsamplingFactor(see there).
-
getSurveyData(domain, origin, number_of_elements, spacing)¶ returns the survey data placed on a given domain.
Parameters: - domain (
Domain) – domain on which the data are to be placed - origin (
listoffloat) – origin of the domain - number_of_elements (
listofint) – number of elements (or cells) in each spatial direction used to span the domain - spacing (
listoffloat) – cell size in each spatial direction
Returns: observed gravity field or magnetic flux density for each cell in the domain and for each cell an indicator 1/0 if the data are valid or not.
Return type: pair of
Scalar- domain (
-
getTags()¶ returns the list of tags
Return type: list
-
getUtmZone()¶ returns a dummy UTM zone since this class does not use real coordinate values.
-
hasTag(tag)¶ returns true if the data set has tag
tagReturn type: bool
-
setSubsamplingFactor(f)¶ Sets the data subsampling factor (default=1).
The factor is applied in all dimensions. For example a 2D dataset with 300 x 150 data points will be reduced to 150 x 75 when a subsampling factor of 2 is used. This becomes important when adding data of varying resolution to a
DomainBuilder.
-
-
class
esys.downunder.TTIWave(domain, v_p, v_s, wavelet, source_tag, source_vector=[0.0, 1.0], eps=0.0, delta=0.0, theta=0.0, rho=1.0, dt=None, u0=None, v0=None, absorption_zone=300.0, absorption_cut=0.01, lumping=True)¶ Bases:
esys.downunder.seismic.WaveBaseSolving the 2D TTI wave equation with
sigma_xx= c11*e_xx + c13*e_zz + c15*e_xzsigma_zz= c13*e_xx + c33*e_zz + c35*e_xzsigma_xz= c15*e_xx + c35*e_zz + c55*e_xzthe coefficients
c11,c13, etc are calculated from the tompsen parameterseps,deltaand the tiltthetaNote: currently only the 2D case is supported. -
__init__(domain, v_p, v_s, wavelet, source_tag, source_vector=[0.0, 1.0], eps=0.0, delta=0.0, theta=0.0, rho=1.0, dt=None, u0=None, v0=None, absorption_zone=300.0, absorption_cut=0.01, lumping=True)¶ initialize the TTI wave solver
Parameters: - domain (
Domain) – domain of the problem - v_p (
escript.Scalar) – vertical p-velocity field - v_s (
escript.Scalar) – vertical s-velocity field - wavelet (
Wavelet) – wavelet to describe the time evolution of source term - source_tag ('str' or 'int') – tag of the source location
- source_vector – source orientation vector
- eps – first Thompsen parameter
- delta – second Thompsen parameter
- theta – tilting (in Rad)
- rho – density
- dt – time step size. If not present a suitable time step size is calculated.
- u0 – initial solution. If not present zero is used.
- v0 – initial solution change rate. If not present zero is used.
- absorption_zone – thickness of absorption zone
- absorption_cut – boundary value of absorption decay factor
- lumping – if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
- domain (
-
getTimeStepSize()¶
-
update(t)¶ returns the solution for the next time marker t which needs to greater than the time marker from the previous call.
-
-
class
esys.downunder.VTIWave(domain, v_p, v_s, wavelet, source_tag, source_vector=[0.0, 0.0, 1.0], eps=0.0, gamma=0.0, delta=0.0, rho=1.0, dt=None, u0=None, v0=None, absorption_zone=None, absorption_cut=0.01, lumping=True, disable_fast_assemblers=False)¶ Bases:
esys.downunder.seismic.WaveBaseSolving the VTI wave equation
Note: In case of a two dimensional domain the second spatial dimenion is depth. -
__init__(domain, v_p, v_s, wavelet, source_tag, source_vector=[0.0, 0.0, 1.0], eps=0.0, gamma=0.0, delta=0.0, rho=1.0, dt=None, u0=None, v0=None, absorption_zone=None, absorption_cut=0.01, lumping=True, disable_fast_assemblers=False)¶ initialize the VTI wave solver
Parameters: - domain (
Domain) – domain of the problem - v_p (
escript.Scalar) – vertical p-velocity field - v_s (
escript.Scalar) – vertical s-velocity field - wavelet (
Wavelet) – wavelet to describe the time evolution of source term - source_tag ('str' or 'int') – tag of the source location
- source_vector – source orientation vector
- eps – first Thompsen parameter
- delta – second Thompsen parameter
- gamma – third Thompsen parameter
- rho – density
- dt – time step size. If not present a suitable time step size is calculated.
- u0 – initial solution. If not present zero is used.
- v0 – initial solution change rate. If not present zero is used.
- absorption_zone – thickness of absorption zone
- absorption_cut – boundary value of absorption decay factor
- lumping – if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
- disable_fast_assemblers (
boolean) – if True, forces use of slower and more general PDE assemblers
- domain (
-
getTimeStepSize()¶
-
setQ(q)¶ sets the PDE q value
Parameters: q – the value to set
-
update(t)¶ returns the solution for the next time marker t which needs to greater than the time marker from the previous call.
-
-
class
esys.downunder.WaveBase(dt, u0, v0, t0=0.0)¶ Bases:
objectBase for wave propagation using the Verlet scheme.
u_tt = A(t,u), u(t=t0)=u0, u_t(t=t0)=v0with a given acceleration force as function of time.
a_n=A(t_{n-1}) v_n=v_{n-1} + dt * a_n u_n=u_{n-1} + dt * v_n
-
__init__(dt, u0, v0, t0=0.0)¶ set up the wave base
Parameters: - dt – time step size (need to be sufficiently small)
- u0 – initial value
- v0 – initial velocity
- t0 – initial time
-
getTimeStepSize()¶
-
update(t)¶ returns the solution for the next time marker t which needs to greater than the time marker from the previous call.
-
-
class
esys.downunder.WennerSurvey(domain, primaryConductivity, secondaryConductivity, current, a, midPoint, directionVector, numElectrodes)¶ Bases:
esys.downunder.dcresistivityforwardmodeling.DcResistivityForwardWennerSurvey forward calculation
-
__init__(domain, primaryConductivity, secondaryConductivity, current, a, midPoint, directionVector, numElectrodes)¶ Parameters: - domain (
Domain) – domain of the model - primaryConductivity (
data) – preset primary conductivity data object - secondaryConductivity (
data) – preset secondary conductivity data object - current (
floatorint) – amount of current to be injected at the current electrode - a (
list) – the spacing between current and potential electrodes - midPoint – midPoint of the survey, as a list containing x,y coords
- directionVector – two element list specifying the direction the survey should extend from the midpoint
- numElectrodes (
int) – the number of electrodes to be used in the survey must be a multiple of 2 for polepole survey
- domain (
-
checkBounds()¶
-
getApparentResistivity()¶
-
getApparentResistivityPrimary()¶
-
getApparentResistivitySecondary()¶
-
getApparentResistivityTotal()¶
-
getElectrodes()¶ retuns the list of electrodes with locations
-
getPotential()¶ returns a list containing 3 lists one for each the primary, secondary and total potential.
-
-
esys.downunder.xrange¶ alias of
builtins.range
Functions¶
-
esys.downunder.CartesianCoordinateTransformation(domain, reference=<esys.downunder.coordinates.CartesianReferenceSystem object>)¶
-
esys.downunder.GRS80ReferenceSystem()¶ returns the
GeodeticReferenceSystemfor the GRS80 Ellipsoid eg. used by Geocentric Datum of Australia GDA94
-
esys.downunder.SphericalReferenceSystem(R=6378137.0)¶ returns the
GeodeticReferenceSystemof a sphere :param R: sphere radius :type R: positivedouble
-
esys.downunder.WGS84ReferenceSystem()¶ returns the
GeodeticReferenceSystemfor the WGS84 Ellipsoid
-
esys.downunder.createAbsorptionLayerFunction(x, absorption_zone=300.0, absorption_cut=0.01, top_absorption=False)¶ Creates a distribution which is one in the interior of the domain of
xand is falling down to the value ‘absorption_cut’ over a margin of thickness ‘absorption_zone’ toward each boundary except the top of the domain.Parameters: - x (
escript.Data) – location of points in the domain - absorption_zone – thickness of the absorption zone
- absorption_cut – value of decay function on domain boundary
Returns: function on ‘x’ which is one in the iterior and decays to almost zero over a margin toward the boundary.
- x (
-
esys.downunder.makeTransformation(domain, coordinates=None)¶ returns a
SpatialCoordinateTransformationfor the given domainParameters: - domain (
esys.escript.AbstractDomain) – domain in the domain of the coordinate transformation - coordinates (
ReferenceSystemorSpatialCoordinateTransformation) – the reference system or spatial coordinate system.
Returns: the spatial coordinate system for the given domain of the specified reference system
coordinates. Ifcoordinatesis already spatial coordinate system based on the riven domaincoordinatesis returned. Otherwise an appropriate spatial coordinate system is created.Return type: - domain (
-
esys.downunder.saveSilo(filename, domain=None, write_meshdata=False, time=0.0, cycle=0, **data)¶ Writes
Dataobjects and their mesh to a file using the SILO file format.Example:
temp=Scalar(..) v=Vector(..) saveSilo("solution.silo", temperature=temp, velocity=v)
tempandvare written to “solution.silo” wheretempis named “temperature” andvis named “velocity”.Parameters: - filename (
str) – name of the output file (‘.silo’ is added if required) - domain (
escript.Domain) – domain of theDataobjects. If not specified, the domain of the givenDataobjects is used. - write_meshdata (
bool) – whether to save mesh-related data such as element identifiers, ownership etc. This is mainly useful for debugging. - time (
float) – the timestamp to save within the file - cycle (
int) – the cycle (or timestep) of the data - <name> – writes the assigned value to the Silo file using <name> as identifier
Note: All data objects have to be defined on the same domain but they may be defined on separate
FunctionSpaces.- filename (
Others¶
- pi