// Copyright (C) 2007 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <dlib/graph.h>
#include <dlib/graph_utils.h>
#include <dlib/set.h>
#include "tester.h"
// This is called an unnamed-namespace and it has the effect of making everything inside this file "private"
// so that everything you declare will have static linkage. Thus we won't have any multiply
// defined symbol errors coming out of the linker when we try to compile the test suite.
namespace
{
using namespace test;
using namespace dlib;
using namespace std;
// Declare the logger we will use in this test. The name of the tester
// should start with "test."
logger dlog("test.graph");
template <
typename graph
>
void graph_test (
)
/*!
requires
- graph is an implementation of graph/graph_kernel_abstract.h
is instantiated with int
ensures
- runs tests on graph for compliance with the specs
!*/
{
print_spinner();
COMPILE_TIME_ASSERT(is_graph<graph>::value);
graph a, b;
dlib::set<unsigned long>::compare_1b_c s;
DLIB_TEST(graph_contains_length_one_cycle(a) == false);
DLIB_TEST(graph_contains_undirected_cycle(a) == false);
DLIB_TEST(a.number_of_nodes() == 0);
a.set_number_of_nodes(5);
DLIB_TEST(graph_is_connected(a) == false);
DLIB_TEST(graph_contains_undirected_cycle(a) == false);
DLIB_TEST(a.number_of_nodes() == 5);
DLIB_TEST(graph_contains_length_one_cycle(a) == false);
for (int i = 0; i < 5; ++i)
{
a.node(i).data = i;
DLIB_TEST(a.node(i).index() == (unsigned int)i);
}
a.remove_node(1);
DLIB_TEST(a.number_of_nodes() == 4);
// make sure that only the number with data == 1 was removed
int count = 0;
for (int i = 0; i < 4; ++i)
{
count += a.node(i).data;
DLIB_TEST(a.node(i).number_of_neighbors() == 0);
DLIB_TEST(a.node(i).index() == (unsigned int)i);
}
DLIB_TEST(count == 9);
a.add_edge(1,1);
DLIB_TEST(graph_contains_length_one_cycle(a) == true);
DLIB_TEST(graph_contains_undirected_cycle(a) == true);
DLIB_TEST(a.has_edge(1,1));
DLIB_TEST(a.node(1).number_of_neighbors() == 1);
a.add_edge(1,3);
DLIB_TEST(a.node(1).number_of_neighbors() == 2);
DLIB_TEST(a.node(2).number_of_neighbors() == 0);
DLIB_TEST(a.node(3).number_of_neighbors() == 1);
DLIB_TEST(a.has_edge(1,1));
DLIB_TEST(a.has_edge(1,3));
DLIB_TEST(a.has_edge(3,1));
DLIB_TEST(graph_contains_undirected_cycle(a) == true);
a.remove_edge(1,1);
DLIB_TEST(graph_contains_length_one_cycle(a) == false);
DLIB_TEST(graph_contains_undirected_cycle(a) == false);
DLIB_TEST(a.node(1).number_of_neighbors() == 1);
DLIB_TEST(a.node(2).number_of_neighbors() == 0);
DLIB_TEST(a.node(3).number_of_neighbors() == 1);
DLIB_TEST(a.has_edge(1,1) == false);
DLIB_TEST(a.has_edge(1,3));
DLIB_TEST(a.has_edge(3,1));
DLIB_TEST(graph_contains_undirected_cycle(a) == false);
swap(a,b);
DLIB_TEST(graph_contains_undirected_cycle(b) == false);
DLIB_TEST(b.node(1).number_of_neighbors() == 1);
DLIB_TEST(b.node(2).number_of_neighbors() == 0);
DLIB_TEST(b.node(3).number_of_neighbors() == 1);
DLIB_TEST(b.has_edge(1,1) == false);
DLIB_TEST(b.has_edge(1,3));
DLIB_TEST(b.has_edge(3,1));
DLIB_TEST(graph_contains_undirected_cycle(b) == false);
DLIB_TEST(a.number_of_nodes() == 0);
DLIB_TEST(b.number_of_nodes() == 4);
copy_graph_structure(b,b);
DLIB_TEST(b.number_of_nodes() == 4);
b.add_edge(1,2);
DLIB_TEST(graph_contains_undirected_cycle(b) == false);
DLIB_TEST(graph_contains_undirected_cycle(b) == false);
b.add_edge(3,2);
DLIB_TEST(graph_contains_undirected_cycle(b) == true);
b.add_edge(1,1);
DLIB_TEST(graph_is_connected(b) == false);
b.add_edge(0,2);
DLIB_TEST(graph_is_connected(b) == true);
DLIB_TEST(graph_contains_undirected_cycle(b) == true);
DLIB_TEST(a.number_of_nodes() == 0);
for (unsigned long i = 0; i < b.number_of_nodes(); ++i)
{
for (unsigned long j = 0; j < b.node(i).number_of_neighbors(); ++j)
{
b.node(i).edge(j) = 'c';
}
}
b.node(1).edge(0) = 'a';
const unsigned long e1 = b.node(1).neighbor(0).index();
b.node(0).edge(0) = 'n';
const unsigned long e2 = b.node(0).neighbor(0).index();
ostringstream sout;
serialize(b, sout);
istringstream sin(sout.str());
DLIB_TEST(graph_contains_undirected_cycle(a) == false);
a.set_number_of_nodes(10);
deserialize(a, sin);
DLIB_TEST(graph_contains_undirected_cycle(a) == true);
for (unsigned long i = 0; i < a.number_of_nodes(); ++i)
{
for (unsigned long j = 0; j < a.node(i).number_of_neighbors(); ++j)
{
if ((i == 0 && a.node(i).neighbor(j).index() == e2) ||
(i == e2 && a.node(i).neighbor(j).index() == 0) )
{
DLIB_TEST(a.node(i).edge(j) == 'n');
}
else if ((i == 1 && a.node(i).neighbor(j).index() == e1) ||
(i == e1 && a.node(i).neighbor(j).index() == 1))
{
DLIB_TEST(a.node(i).edge(j) == 'a');
}
else
{
DLIB_TEST(i != 0 || a.node(i).neighbor(j).index() != e2);
DLIB_TEST_MSG(a.node(i).edge(j) == 'c',a.node(i).edge(j));
}
}
}
DLIB_TEST(a.number_of_nodes() == 4);
DLIB_TEST(a.has_edge(1,2) == true);
DLIB_TEST(a.has_edge(3,2) == true);
DLIB_TEST(a.has_edge(1,1) == true);
DLIB_TEST(a.has_edge(0,2) == true);
DLIB_TEST(a.has_edge(1,3) == true);
DLIB_TEST(a.has_edge(0,1) == false);
DLIB_TEST(a.has_edge(0,3) == false);
DLIB_TEST(a.has_edge(0,0) == false);
DLIB_TEST(a.has_edge(1,0) == false);
DLIB_TEST(a.has_edge(3,0) == false);
for (unsigned long i = 0; i < a.number_of_nodes(); ++i)
{
a.node(i).data = static_cast<int>(i);
}
a.remove_node(2);
DLIB_TEST(a.number_of_nodes() == 3);
DLIB_TEST(graph_contains_undirected_cycle(a) == true);
count = 0;
for (unsigned long i = 0; i < a.number_of_nodes(); ++i)
{
if (a.node(i).data == 0)
{
DLIB_TEST(a.node(i).number_of_neighbors() == 0);
}
else if (a.node(i).data == 1)
{
DLIB_TEST(a.node(i).number_of_neighbors() == 2);
}
else if (a.node(i).data == 3)
{
DLIB_TEST(a.node(i).number_of_neighbors() == 1);
}
else
{
DLIB_TEST_MSG(false,"this is impossible");
}
for (unsigned long j = 0; j < a.number_of_nodes(); ++j)
{
if ((a.node(i).data == 1 && a.node(j).data == 1) ||
(a.node(i).data == 1 && a.node(j).data == 3) ||
(a.node(i).data == 3 && a.node(j).data == 1))
{
DLIB_TEST(a.has_edge(i,j) == true);
++count;
}
else
{
DLIB_TEST(a.has_edge(i,j) == false);
}
}
}
DLIB_TEST_MSG(count == 3,count);
DLIB_TEST(graph_contains_undirected_cycle(a) == true);
a.remove_edge(1,1);
DLIB_TEST(graph_contains_undirected_cycle(a) == false);
DLIB_TEST(b.number_of_nodes() == 4);
b.clear();
DLIB_TEST(b.number_of_nodes() == 0);
a.clear();
/*
1 7
| / \
2 6 0
\ / |
3 /
/ \ /
4 5
*/
a.set_number_of_nodes(8);
a.add_edge(1,2);
a.add_edge(2,3);
a.add_edge(3,4);
a.add_edge(3,5);
a.add_edge(3,6);
a.add_edge(6,7);
a.add_edge(7,0);
a.add_edge(0,5);
DLIB_TEST(graph_is_connected(a));
dlib::set<dlib::set<unsigned long>::compare_1b_c>::kernel_1b_c sos;
dlib::graph<dlib::set<unsigned long>::compare_1b_c, dlib::set<unsigned long>::compare_1b_c>::kernel_1a_c join_tree;
unsigned long temp;
triangulate_graph_and_find_cliques(a,sos);
DLIB_TEST(a.number_of_nodes() == 8);
create_join_tree(a, join_tree);
DLIB_TEST(join_tree.number_of_nodes() == 6);
DLIB_TEST(graph_is_connected(join_tree) == true);
DLIB_TEST(graph_contains_undirected_cycle(join_tree) == false);
DLIB_TEST(is_join_tree(a, join_tree));
// check old edges
DLIB_TEST(a.has_edge(1,2));
DLIB_TEST(a.has_edge(2,3));
DLIB_TEST(a.has_edge(3,4));
DLIB_TEST(a.has_edge(3,5));
DLIB_TEST(a.has_edge(3,6));
DLIB_TEST(a.has_edge(6,7));
DLIB_TEST(a.has_edge(7,0));
DLIB_TEST(a.has_edge(0,5));
DLIB_TEST(graph_is_connected(a));
DLIB_TEST(sos.size() == 6);
temp = 1; s.add(temp);
temp = 2; s.add(temp);
DLIB_TEST(sos.is_member(s));
s.clear();
temp = 2; s.add(temp);
temp = 3; s.add(temp);
DLIB_TEST(sos.is_member(s));
s.clear();
temp = 4; s.add(temp);
temp = 3; s.add(temp);
DLIB_TEST(sos.is_member(s));
sos.reset();
while (sos.move_next())
{
DLIB_TEST(is_clique(a, sos.element()));
DLIB_TEST(is_maximal_clique(a, sos.element()));
}
}
void test_copy()
{
{
graph<int,int>::kernel_1a_c a,b;
a.set_number_of_nodes(3);
a.node(0).data = 1;
a.node(1).data = 2;
a.node(2).data = 3;
a.add_edge(0,1);
a.add_edge(0,2);
edge(a,0,1) = 4;
edge(a,0,2) = 5;
a.add_edge(0,0);
edge(a,0,0) = 9;
copy_graph(a, b);
DLIB_TEST(b.number_of_nodes() == 3);
DLIB_TEST(b.node(0).data == 1);
DLIB_TEST(b.node(1).data == 2);
DLIB_TEST(b.node(2).data == 3);
DLIB_TEST(edge(b,0,1) == 4);
DLIB_TEST(edge(b,0,2) == 5);
DLIB_TEST(edge(b,0,0) == 9);
}
{
graph<int,int>::kernel_1a_c a,b;
a.set_number_of_nodes(4);
a.node(0).data = 1;
a.node(1).data = 2;
a.node(2).data = 3;
a.node(3).data = 8;
a.add_edge(0,1);
a.add_edge(0,2);
a.add_edge(2,3);
edge(a,0,1) = 4;
edge(a,0,2) = 5;
edge(a,2,3) = 6;
copy_graph(a, b);
DLIB_TEST(b.number_of_nodes() == 4);
DLIB_TEST(b.node(0).data == 1);
DLIB_TEST(b.node(1).data == 2);
DLIB_TEST(b.node(2).data == 3);
DLIB_TEST(b.node(3).data == 8);
DLIB_TEST(edge(b,0,1) == 4);
DLIB_TEST(edge(b,0,2) == 5);
DLIB_TEST(edge(b,2,3) == 6);
}
}
class graph_tester : public tester
{
/*!
WHAT THIS OBJECT REPRESENTS
This object represents a test for the graph object. When it is constructed
it adds itself into the testing framework. The command line switch is
specified as test_directed_graph by passing that string to the tester constructor.
!*/
public:
graph_tester (
) :
tester ("test_graph",
"Runs tests on the graph component.")
{}
void perform_test (
)
{
dlog << LINFO << "testing kernel_1a_c";
graph_test<graph<int>::kernel_1a_c>();
dlog << LINFO << "testing kernel_1a";
graph_test<graph<int>::kernel_1a>();
test_copy();
}
} a;
}